110 resultados para Rat skeletal muscle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: Randomized crossover double-blinded placebo-controlled trial. OBJECTIVE: To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery. BACKGROUND: Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations. METHODS: Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; A = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion. RESULTS: Active LLLT increased the number of repetitions by 14.5% (mean +/- SD, 39.6 +/- 4.3 versus 34.6 +/- 5.6; P = .037) and the elapsed time before exhaustion by 8.0% (P = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (P<.01), creatine kinase activity (P = .017), and C-reactive protein levels (P = .047), showing a faster recovery with LLLT application prior to the exercise. CONCLUSION: We conclude that pre-exercise irradiation of the biceps with an LLLT dose of 6 J per application location, applied in 2 locations, increased endurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactive protein. LEVEL OF EVIDENCE: Performance enhancement, level 1b. J Orthop Sports Phys Ther 2010;40(8):524-532. doi:10.2519/jospt.2010.3294

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested if modulation in mRNA expression of cyclooxygenase isoforms (COX-1 and COX-2) can be related to protective effects of phototherapy in skeletal muscle. Thirty male Wistar rats were divided into five groups receiving either one of four laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation (904 nm, 15 mW average power) was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions. Immediately after sixth contraction, blood samples were collected to evaluate creatine kinase activity and muscles were dissected and frozen in liquid nitrogen to evaluate mRNA expression of COX-1 and COX-2. The 1.0 and 3.0 J groups showed significant enhancement (P < 0.01) in total work performed in six tetanic contractions compared with control group. All laser groups, except the 3.0 J group, presented significantly lower post-exercise CK activity than control group. Additionally, 1.0 J group showed increased COX-1 and decreased COX-2 mRNA expression compared with control group and 0.1, 0.3 and 3.0 J laser groups (P < 0.01). We conclude that pre-exercise infrared laser irradiation with dose of 1.0 J enhances skeletal muscle performance and decreases post-exercise skeletal muscle damage and inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our aim was to investigate the immediate effects of bilateral, 830 nm, low-level laser therapy (LLLT) on high-intensity exercise and biochemical markers of skeletal muscle recovery, in a randomised, double-blind, placebo-controlled, crossover trial set in a sports physiotherapy clinic. Twenty male athletes (nine professional volleyball players and eleven adolescent soccer players) participated. Active LLLT (830 nm wavelength, 100 mW, spot size 0.0028 cm(2), 3-4 J per point) or an identical placebo LLLT was delivered to five points in the rectus femoris muscle (bilaterally). The main outcome measures were the work performed in the Wingate test: 30 s of maximum cycling with a load of 7.5% of body weight, and the measurement of blood lactate (BL) and creatine kinase (CK) levels before and after exercise. There was no significant difference in the work performed during the Wingate test (P > 0.05) between subjects given active LLLT and those given placebo LLLT. For volleyball athletes, the change in CK levels from before to after the exercise test was significantly lower (P = 0.0133) for those given active LLLT (2.52 U l(-1) +/- 7.04 U l(-1)) than for those given placebo LLLT (28.49 U l(-1) +/- 22.62 U l(-1)). For the soccer athletes, the change in blood lactate levels from before exercise to 15 min after exercise was significantly lower (P < 0.01) in the group subjected to active LLLT (8.55 mmol l(-1) +/- 2.14 mmol l(-1)) than in the group subjected to placebo LLLT (10.52 mmol l(-1) +/- 1.82 mmol l(-1)). LLLT irradiation before the Wingate test seemed to inhibit an expected post-exercise increase in CK level and to accelerate post-exercise lactate removal without affecting test performance. These findings suggest that LLLT may be of benefit in accelerating post-exercise recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives: There are some indications that low-level laser therapy (LLLT) may delay the development of skeletal muscle fatigue during high-intensity exercise. There have also been claims that LED cluster probes may be effective for this application however there are differences between LED and laser sources like spot size, spectral width, power output, etc. In this study we wanted to test if light emitting diode therapy (LEDT) can alter muscle performance, fatigue development and biochemical markers for skeletal muscle recovery in an experimental model of biceps humeri muscle contractions. Study Design/Materials and Methods: Ten male professional volleyball players (23.6 [SD +/- 5.6] years old) entered a randomized double-blinded placebo-controlled crossover trial. Active cluster LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW, 30 seconds total irradiation time, 41.7J of total energy irradiated) or an identical placebo LEDT was delivered under double-blinded conditions to the middle of biceps humeri muscle immediately before exercise. All subjects performed voluntary biceps humeri contractions with a workload of 75% of their maximal voluntary contraction force (MVC) until exhaustion. Results: Active LEDT increased the number of biceps humeri contractions by 12.9% (38.60 [SD +/- 9.03] vs. 34.20 [SD +/- 8.68], P = 0.021) and extended the elapsed time to perform contractions by 11.6% (P = 0.036) versus placebo. In addition, post-exercise levels of biochemical markers decreased significantly with active LEDT: Blood Lactate (P = 0.042), Creatine Kinase (P = 0.035), and C-Reative Protein levels (P = 0.030), when compared to placebo LEDT. Conclusion: We conclude that this particular procedure and dose of LEDT immediately before exhaustive biceps humeri contractions, causes a slight delay in the development of skeletal muscle fatigue, decreases post-exercise blood lactate levels and inhibits the release of Creatine Kinase and C-Reative Protein. Lasers Surg. Med. 41:572-577, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to investigate the effect of 830 nm low-level laser therapy (LLLT) on skeletal muscle fatigue. Ten healthy male professional volleyball players entered a crossover randomized double-blinded placebo-controlled trial. Active LLLT (830 nm wavelength, 100 mW output, spot size 0.0028 cm(2), 200 s total irradiation time) or an identical placebo LLLT was delivered to four points on the biceps humeri muscle immediately before exercises. All subjects performed voluntary biceps humeri contractions with a load of 75% of the maximum voluntary contraction (MVC) force until exhaustion. After active LLLT the mean number of repetitions was significantly higher than after placebo irradiation [mean difference 4.5, standard deviation (SD) +/- 6.0, P = 0.042], the blood lactate levels increased after exercises, but there was no significant difference between the treatments. We concluded that 830 nm LLLT can delay the onset of skeletal muscle fatigue in high-intensity exercises, in spite of increased blood lactate levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years, phototherapy has becoming a promising tool to improve skeletal muscle recovery after exercise, however, it was not compared with other modalities commonly used with this aim. In the present study we compared the short-term effects of cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) with placebo LEDT on biochemical markers related to skeletal muscle recovery after high-intensity exercise. A randomized double-blind placebo-controlled crossover trial was performed with six male young futsal athletes. They were treated with CWIT (5A degrees C of temperature [SD +/- 1A degrees]), active LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW of output power, 30 s of irradiation time per point, and 41.7 J of total energy irradiated per point, total of ten points irradiated) or an identical placebo LEDT 5 min after each of three Wingate cycle tests. Pre-exercise, post-exercise, and post-treatment measurements were taken of blood lactate levels, creatine kinase (CK) activity, and C-reactive protein (CRP) levels. There were no significant differences in the work performed during the three Wingate tests (p > 0.05). All biochemical parameters increased from baseline values (p < 0.05) after the three exercise tests, but only active LEDT decreased blood lactate levels (p = 0.0065) and CK activity (p = 0.0044) significantly after treatment. There were no significant differences in CRP values after treatments. We concluded that treating the leg muscles with LEDT 5 min after the Wingate cycle test seemed to inhibit the expected post-exercise increase in blood lactate levels and CK activity. This suggests that LEDT has better potential than 5 min of CWIT for improving short-term post-exercise recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that exhaustive exercise increases serum and skeletal muscle IL-6 concentrations. However, the effect of exhaustive exercise on the concentrations of other cytokines in the muscle and in the adipose tissue is controversial. The purpose of this study was to evaluate the effect of exhaustive exercise on mRNA and protein expression of IL-10, TNF-alpha and IL-6 in different types of skeletal muscle (EDL, soleus) and in two different depots of white adipose tissue (mesenteric-MEAT and retroperitoneal-RPAT). Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6) and 6 (E6 group, n = 6) hours after the exhaustion protocol, which consisted of running on a treadmill (approximately 70% VO(2max) for 50 min and then subsequently at an elevated rate that increased at 1 m/min every minute, until exhaustion). The control group (C group, n = 6) was not subjected to exercise. Cytokine protein expression increased in EDL, soleus, MEAT and RPAT from all exercised groups, as detected by ELISA. EDL IL-10 and TNF-alpha expression was higher than that of the soleus. The IL-10/TNF-alpha ratio was increased in the skeletal muscle, especially in EDL, but it was found to be decreased in the adipose tissue. These results show that exhaustive exercise presents a different effect depending on the tissue which is analysed: in the muscle, it induces an anti-inflammatory effect, especially in type 2 fibres, while the pro-inflammatory effect prevails in adipose tissue, possibly contributing to increased lipolysis to provide energy for the exercising muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropomyosin (Tm) is a dimeric coiled-coil protein that polymerizes through head-to-tail interactions. These polymers bind along actin filaments and play an important role in the regulation of muscle contraction. Analysis of its primary structure shows that Tm is rich in acidic residues, which are clustered along the molecule and may from sites for divalent cation binding. In a previous study, we showed that the Mg(2+)-induced increase in stability of the C-terminal half of Tin is sensitive to imitations near the C-terminus. In the present report, we study the interaction between Mg(2+) and full-length Tin and smaller fragments corresponding to the last 65 and 26 Tin residues. Although the smaller Tin peptide (Tm(259-284(W269))) is flexible and to large extent unstructured, the larger Tm(220-284(W269)) fragments forms a coiled coil in solution whose stability increases significantly in the presence of Mg(2+). NMR analysis shows thin Mg(2+) induces chemical shift perturbations in both Tm(220-284(W269)) and Tm(259-284(W269)) in the vicinity of His276, in which are located several negatively charged residues. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 583-590, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate whether Branched-chain amino acids (BCAAs) supplementation had any beneficial effects on growth and metabolic parameters of young rats submitted to chronic aerobic exercise. Thirty-two young rats (age: 21-d) were randomly assigned to four experimental groups (n = 8): Supplemented Trained (Sup/Ex), Control Trained (Ctrl/Ex), Supplemented Sedentary (Sup/Sed) and Control Sedentary (Ctrl/Sed). The trained groups underwent a five-week swimming protocol and received supplemented (45 mg BCAA/body weight/day) or control ration. Trained animals presented a lower body length and a higher cartilage weight, regardless of supplementation. Physical activity was responsible for a substantial reduction in proteoglycan synthesis in cartilage tissue, and BCAA supplementation was able to attenuate this reduction and also to improve glycogen stores in the liver, although no major differences were found in body growth associated to this supplementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-conductance Ca(2+)-activated K(+) channels (BK) play a fundamental role in modulating membrane potential in many cell types. The gating of BK channels and its modulation by Ca(2+) and voltage has been the subject of intensive research over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between states in the same plane are cooperative and modulated by Ca(2+). Transitions across planes are highly concerted and voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by Ca(2+). Large single channel data sets at five Ca(2+) concentrations were simultaneously analyzed from a Bayesian perspective by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for homotetramers, able to explain the Ca(2+) modulation of the gating process. This model differs from the standard Monod-Wyman-Changeux scheme in that one distinguishes when two Ca(2+) ions are bound to adjacent or diagonal subunits of the tetramer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims Glycosylation with beta-N-acetylglucosamine (O-GlcNAcylation) is one of the most complex post-translational modifications. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). We recently reported that endothelin-1 (ET-1) augments vascular levels of O-GlcNAcylated proteins. Here we tested the hypothesis that O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Methods and results Incubation of vascular smooth muscle cells (VSMCs) with ET-1 (0.1 mu M) produces a time-dependent increase in O-GlcNAc levels. ET-1-induced O-GlcNAcylation is not observed when VSMCs are previously transfected with OGT siRNA, treated with ST045849 (OGT inhibitor) or atrasentan (ET(A) antagonist). ET-1 as well as PugNAc (OGA inhibitor) augmented contractions to phenylephrine in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632. Incubation of VSMCs with ET-1 increased expression of the phosphorylated forms of myosin phosphatase target subunit 1 (MYPT-1), protein kinase C-potentiated protein phosphatase 1 inhibitor protein (protein kinase C-potentiated phosphatase inhibitor-17), and myosin light chain (MLC) and RhoA expression and activity, and this effect was abolished by both OGT siRNA transfection or OGT inhibition and atrasentan. ET-1 also augmented expression of PDZ-Rho GEF (guanine nucleotide exchange factor) and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, ST045849, and atrasentan. Conclusion We suggest that ET-1 augments O-GlcNAcylation and this modification contributes to increased vascular contractile responses via activation of the RhoA/Rho-kinase pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consumption of protein supplements containing amino acids is increasing around the world Aspartate (Asp) and asparagine (Asn) are amino acids metabolized by skeletal muscle. This metabolism involves biochemical pathways that are involved in increasing Krebs cycle activity via anaplerotic reactions. resulting in higher glutamine concentrations. A connection between amino acid supplementation, glycogen concentration, and glucose uptake has been previously demonstrated. The purpose of this study was to evaluate the effect of asp and Asn Supplementation on glucose uptake in rats using three different glycogen concentrations The results indicate that Asp and Asn supplementation in rats with high glycogen concentrations (fed state) further increased the glycogen concentration in the muscle, and decreased in vitro 2-deoxyglucose (a glucose analog.) uptake by the muscle at maximal insulin concentrations When animals had a medium glycogen concentration (consumed lard for 3 days). glucose uptake was higher in the supplemented group at sub-maximal insulin concentrations. We conclude that supplementation of Asp and Asn reduced glucose transport in rat muscle only at higher levels of glycogen. The ingestion of lard for 3 days changed the responsiveness and sensitivity to insulin, and that group had higher levels of insulin sensivity with Asp and Asn supplementation. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the animals were killed, and the soleus muscle was resected and divided into three segments. Morphological changes indicative of muscle damage appeared in all three segments of group B. In a lesser degree, similar changes were also detected in muscles subjected to only tetanus. This model was effective; reproducing an injury similar to what occurs in human sports injuries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. Surgical recession of an extraocular muscle (EOM) posterior to its original insertion is a common form of strabismus surgery, weakening the rotational force exerted by the muscle on the globe and improving eye alignment. The purpose of this study was to assess myosin heavy chain (MyHC) isoform expression and satellite cell activity as defined by Pax7 expression in recessed EOMs of adult rabbits compared with that in muscles tenotomized but not recessed and with that in normal control muscles. METHODS. The scleral insertion of the superior rectus muscle was detached and sutured either 7 mm posterior to its original insertion site (recession surgery) or at the same site (tenotomy). One day before euthanatization, the rabbits received bromodeoxyuridine (BrdU) injections. After 7 and 14 days, selected EOMs from both orbits were examined for changes in fast, slow, neonatal, and developmental MyHC isoform expression, Pax7 expression, and BrdU incorporation. RESULTS. Recession and tenotomy surgery resulted in similar changes in the surgical EOMs. These included a decreased proportion of fast MyHC myofibers, an increased proportion of slow MyHC myofibers, and increased BrdU-positive satellite cells. Similar changes were seen in the non-operated contralateral superior rectus muscles. The ipsilateral inferior rectus showed reciprocal changes to the surgical superior rectus muscles. CONCLUSIONS. The EOMs are extremely adaptive to changes induced by recession and tenotomy surgery, responding with modulations in fiber remodeling and myosin expression. These adaptive responses could be manipulated to improve surgical success rates. (Invest Ophthalmol Vis Sci. 2010;51:5646-5656) DOI:10.1167/iovs.10-5523