73 resultados para Nitrogen excretion
Resumo:
Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability of oxygen. Data suggest that yeast strains vary in their response to the nitrogen source`s complex structure and to oxygen availability. In addition, the amount of trehalose produced could be correlated with the fermentation performance of the different yeasts, suggesting that efficient fuel ethanol production depends on finding conditions which are appropriate for a particular strain, considering demand and dependence on available nitrogen sources in the fermentation medium.
Resumo:
Glucose and fructose fermentations by industrial yeasts strains are strongly affected by both the structural complexity of the nitrogen Source and the availability of oxygen. In this Study two Saccharomyces cerevisiae industrial wine strains were grown, under shaken and static conditions, in a media containing either a) 20% (w/v) glucose, or b) 10% (w/v) fructose and 10% (w/v) glucose or c) 20% (w/v) fructose, all supplemented with nitrogen Sources varying from a single ammonium salt (ammonium Sulfate) to free amino acids (casamino acids) and peptides (peptone). Data Suggest that 1 complex Structured nitrogen source is not submitted to the same control mechanisms as those involved in the utilization of simpler structured nitrogen Sources, and mutual interaction between carbon and nitrogen Sources, including the mechanisms involved ill the regulation of aerobic/anaerobic metabolism, may play in important role in defining yeast fermentation performance and the differing response to the structural complexity of the nitrogen Source, with a strong impact oil fermentation performance.
Resumo:
Purpose: Adequate energy provision and nitrogen losses prevention of critically ill patients are essentials for treatment and recovery. The aims of this study were to evaluate energy expenditure (EE) and nitrogen balance (NB) of critically ill patients, to classify adequacy of energy intake (El), and to verify adequacy of El capacity to reverse the negative NB. Methods: Seventeen patients from an intensive care unit were evaluated within a 24-hour period. Indirect calorimetry was performed to calculate patient`s EE and Kjeldhal for urinary nitrogen analysis. The total El and protein intake were calculated from the standard parenteral and enteral nutrition infused. Underfeeding was characterized as El 90% or less and overfeeding as 110% or greater of EE. The adequacy of the El (El EE(-1) x 100) and the NB were estimated and associated with each other by Spearman coefficient. Results: The mean EE was 1515 +/- 268 kcal d(-1) and most of the patients (11/14) presented a negative NB (-8.2 +/- 4.7 g.d(-1)). A high rate (53%) of inadequate energy intake was found, and a positive correlation between El EE(-1) and NB was observed (r = 0.670; P = .007). Conclusion: The results show a high rate of inadequate El and negative NB, and equilibrium between El and EE may improve NB. Indirect calorimetry can be used to adjust the energy requirements in the critically ill patients. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aims: To evaluate cell catabolism by balance of nitrogen and phosphate, and creatinine excretion in children post-cardiac surgery; to establish protein and energy requirements to minimize catabolism; and to assess nutritional therapy by following these parameters and serial anthropometric measurements. Methods: A prospective observational study of children with congenital heart disease undergoing cardiac surgery. Blood samples and 24-h urine collections were obtained postoperatively for creatinine measurement and nitrogen and phosphate balance. Anthropometric measurements (weight, mid-arm muscle circumference and triceps skinfold thickness) were obtained preoperatively and at paediatric intensive care unit and hospital discharge. Results: Eleven children were studied for 3-10 postoperative days. Anabolism was associated with higher protein and energy intakes compared to catabolism (1.1 vs. 0.1 g/kg/day and 54 vs. 17 kcal/kg/day, respectively). On days with anabolism, phosphate balance was greater compared with that on days with catabolism. Daily creatinine excretion did not correlate with protein balance. Anthropometric measurements did not change significantly over time. Conclusions: Children with congenital heart disease undergoing cardiac surgery achieved anabolism with > 55 kcal/kg/day and > 1 g/kg/day of protein. Balance of phosphate was useful to monitor cell breakdown. Anthropometric measurements were not valuable to evaluate nutritional therapy in this population.
Resumo:
Bilioduodenal and biliojejunal anastomoses are effective for the treatment of biliary obstruction. The objective of this study was to compare the effects of these anastomoses on hepatobiliary excretion and enterobiliary reflux. Enterobiliary reflux and biliary excretion were evaluated respectively after oral administration of technetium (Tc-99m) in combination with sodium phytate and intravenous infusion of Tc-99m with diisopropyl-iminodiacetic acid. Enterobiliary reflux occurred to an equal degree in the bilioduodenal and biliojejunal groups. Maximum hepatic activity time (T-max) and radiotracer clearance half-time (T-1/2) were similar in both groups. However, when compared with that found for the sham-operated group, T-max, and T-1/2 were higher in the biliojejunal group (P = 0.02 and P = 0.01, respectively). Histopathological analysis showed marked reduction in ductal proliferation in both groups. These data undermine the theoretical advantages attributed to biliojejunal anastomosis and further the understanding of the pathophysiology of cholangitis that occurs even with patent anastomosis.
Resumo:
A study was conducted to determine the effects of feeding spineless cactus cladodes on diuresis and urinary electrolyte excretion in goats. Five bucks were used in a 5 x 5 Latin square experiment with 17-day periods. Experimental diets contained (g/kg dry matter (DM) basis) 370, 470, 570, 670, and 770 spineless cactus cladodes. Water consumption from feed and urine output increased linearly (P<0.05) as the level of cactus cladodes in the diet increased. However, water intake from drinking was low and unaffected by cactus cladode level. Creatinine clearance and urinary Na excretion were similar for all dietary treatments while K excretion decrease linearly (P<0.05) as the level of cactus cladodes in the diet increased. Feeding cactus cladodes caused diuresis and reduced urinary K excretion in goats. Possible reasons for these effects include water over-consumption from cactus cladodes and high dietary K intake. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the productive performance, nutrients digestion and metabolism of three different genetic groups fed with the same diet based on corn silage. 30 heifers in growth were used of three groups of cattle, the following: Nellore (Bos taurus indicus) (n = 10), Holstein (Bos taurus taurus) (n = 10), and Mediterranean buffaloes (Bubalis bubalis) (n = 10). The animals were fed in groups and received the same experimental diet composed of corn silage and concentrate for growing heifers. In the evaluation of animals the performance, consumption and total apparent digestibility of dry matter and nutrients with the aid of internal markers (chromic oxide) and external (iADF), rumen fermentation, excretion of purine derivatives, nitrogen balance and blood metabolites were measured. No differences were observed in animal performance. There were differences in nutrient intake and apparent digestibility of dry matter and nutrients in different groups of cattle. The concentration of ammonia nitrogen (NH3-N) and short chain fatty acids (SCFA) in the rumen were higher and lower, respectively, for the group of buffaloes in relation to other experimental groups evaluated. When considering the excretion of total purine derivatives, buffaloes showed the lowest value compared to other genetic groups evaluated; about 61.76% of the total genetic group Nellore and 57.62% of the total genetic group Holstein with an average of 33.67 mmol/day. For the buffaloes, the excretion of xanthine and hypoxanthine observed was of 5.11% of total purine derivatives. There was a better nitrogen balance (g/day) for groups of Holstein heifers and Nellore in relation to the group of buffalo heifers. There were differences in the concentrations of urea and urea nitrogen in serum and liver enzymes where the buffaloes had higher values in relation at the bovines. There is a great metabolic diversity among the experimental groups evaluated and it was more exacerbated among buffaloes and bovines, when submitted to the same diet and same management conditions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Introduction: The aim of this study was to assess cyclic fatigue resistance in rotary nickel-titanium instruments submitted to nitrogen ion implantation by using a custom-made cyclic fatigue testing apparatus. Methods: Thirty K3 files, size #25, taper 0.04, were divided into 3 experimental groups as follows: group A, 12 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), accelerating voltage of 200 kV, currents of 1 mu A/cm(2), 130 degrees C temperature, and vacuum conditions of 10 x 10(-6) torr for 6 hours; group B, 12 nonimplanted files; and group C, 6 files submitted to thermal annealing for 6 hours at 130 degrees C. One extra file was used for process control. All files were submitted to a cyclic fatigue test that was performed with an apparatus that allowed the instruments to rotate freely, simulating rotary instrumentation of a curved canal (40-degree, 5-mm radius curve). An electric motor handpiece was used with a contra-angle of 16:1 at an operating speed of 300 rpm and a torque of 2 N-cm. Time to failure was recorded with a stopwatch in seconds and subsequently converted to number of cycles to fracture. Data were analyzed with the Student t test (P < .05). Results: Ion-implanted instruments reached significantly higher cycle numbers before fracture (mean, 510 cycles) when compared with annealed (mean, 428 cycles) and nonimplanted files (mean, 381 cycles). Conclusions: Our results showed that nitrogen ion implantation improves cyclic fatigue resistance in rotary nickel-titanium instruments. Industrial implementation. of this surface modification technique would produce rotary nickel-titanium instruments with a longer working life. (J Endod 2010;36:1183-1186)
Resumo:
BACKGROUND: Mycobacterium tuberculosis genotypes resistant to reactive nitrogen intermediates (RNI) predominate in certain urban communities, suggesting that this phenotype influences disease transmission. OBJECTIVE: To compare different M. tuberculosis genotypes for resistance to RNI generated in vitro. DESIGN: We genotyped 420 M. tuberculosis isolates from a neighborhood in Sao Paulo, Brazil, and analyzed them for susceptibility to RNI generated in acidified sodium nitrite (ASN) solution. RESULTS: Seventy-one (43%) of 167 recent-infection strains and 68 (43%) of 158 endogenous infection strains showed moderate- to high-level ASN resistance. CONCLUSION: ASN resistance of M. tuberculosis is not necessarily a determining factor for enhanced transmission.
Resumo:
To evaluate the effect of monensin on the performance of growing cattle under different environmental temperatures, 24 male calves (81.9 +/- 7.7 kg mean weight and 100 days old) were distributed in a 2 x 2 factorial arrangement, contrasting 0 or 85 mg monensin/animal per day at 24.3 or 33.2 degrees C (environmental temperatures). Monensin supplementation increased weight gain (P=0.036), improved feed efficiency (P=0.040), increased ruminal concentrations of volatile fatty acids (VFA; P=0.003) and decreased the molar proportion of butyrate (P=0.034); all effects irrespective of environmental temperatures. A temperature-dependent monensin effect was detected on nitrogen retention (P=0.018) and N retained:N absorbed ratio (P=0.012). Animals fed monensin retained higher N amounts than those of the non-supplemented ones when the environmental temperature was 33.2 degrees C. Environmental temperature and monensin supplementation showed an interaction effect on urine N concentration (P=0.003). Temperature did not affect N excretion in monensin-fed animals, but increased N excretion in the non-supplemented ones. Monensin increased the crude protein (CP) digestibility (P=0.094) for
Resumo:
The objective of the study was assessing the effect of the nitrogen and the aspersion irrigation on the growth and dry matter yield of black oats (Avena strigosa Schreb). The experiment was conducted in the Campus of USP in Pirassununga, Sao Paulo State. In the study were evaluated four nitrogen levels (0, 50, 100 and 150 kg of N ha(-1)) and also the presence or absence of the irrigation. The plant variables evaluated were: mean height, dry matter percentage, yield and growth rate. The results had disclosed to greater height of plant in the irrigated condition, reflecting in the higher production of dry matter. In dry land area, percentage of DM was 24.7% and in irrigated area 18.7%. The nitrogen was significantly only for plant mean height that showed linear fit when carried through the irrigation. The effect of the irrigation was better for the production of black oats than nitrogen.
Resumo:
Diverse invertebrate and vertebrate species live in association with plants of the large Neotropical family Bromeliaceae. Although previous studies have assumed that debris of associated organisms improves plant nutrition, so far little evidence supports this assumption. In this study we used isotopic ((15)N) and physiological methods to investigate if the treefrog Scinax hayii, which uses the tank epiphytic bromeliad Vriesea bituminosa as a diurnal shelter, contributes to host plant nutrition. In the field, bromeliads with frogs had higher stable N isotopic composition (delta(15)N) values than those without frogs. Similar results were obtained from a controlled greenhouse experiment. Linear mixing models showed that frog feces and dead termites used to simulate insects that eventually fall inside the bromeliad tank contributed, respectively, 27.7% (+/- 0.07 SE) and 49.6% (+/- 0.50 SE) of the total N of V. bituminosa. Net photosynthetic rate was higher in plants that received feces and termites than in controls; however, this effect was only detected in the rainy, but not in the dry season. These results demonstrate for the first time that vertebrates contribute to bromeliad nutrition, and that this benefit is seasonally restricted. Since amphibian-bromeliad associations occur in diverse habitats in South and Central America, this mechanism for deriving nutrients may be important in bromeliad systems throughout the Neotropics.
Resumo:
The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO(3)(-)/NH(4)(+) or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary. GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH(4)(+) assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad`s leaves. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Urea is an important nitrogen source for some bromeliad species, and in nature it is derived from the excretion of amphibians, which visit or live inside the tank water. Its assimilation is dependent on the hydrolysis by urease (EC: 3.5.1.5), and although this enzyme has been extensively studied to date, little information is available about its cellular location. In higher plants, this enzyme is considered to be present in the cytoplasm. However, there is evidence that urease is secreted by the bromeliad Vriesea gigantea, implying that this enzyme is at least temporarily located in the plasmatic membrane and cell wall. In this article, urease activity was measured in different cell fractions using leaf tissues of two bromeliad species: the tank bromeliad V. gigantea and the terrestrial bromeliad Ananas comosus (L.) Merr. In both species, urease was present in the cell wall and membrane fractions, besides the cytoplasm. Moreover, a considerable difference was observed between the species: while V. gigantea had 40% of the urease activity detected in the membranes and cell wall fractions, less than 20% were found in the same fractions in A. comosus. The high proportion of urease found in cell wall and membranes in V. gigantea was also investigated by cytochemical detection and immunoreaction assay. Both approaches confirmed the enzymatic assay. We suggest this physiological characteristic allows tank bromeliads to survive in a nitrogen-limited environment, utilizing urea rapidly and efficiently and competing successfully for this nitrogen source against microorganisms that live in the tank water.
Resumo:
Hypnea musciformis (Wulfen in Jacqu.) J.V. Lamour. is the main source for carrageenan production in Brazil and strains with selected characteristics could improve the production of raw material. The effects of kinetin on growth rates, morphology, protein content, and concentrations of pigments (chlorophyll a, phycoerythrin, phycocyanin, and allophycocyanin) were assessed in the wild strain (brown phenotype) and in the phycoerythrin-deficient strain (green phenotype) of H. musciformis. Concentrations of kinetin ranging from 0 to 50 mu M were tested in ASP 12-NTA synthetic medium with 10 mu M nitrate (N-limited) and 100 mu M nitrate (N-saturated). In N-limited condition, kinetin stimulated growth rates of the phycoerythrin-deficient strain and formation of lateral branches in both colour strains. Kinetin stimulated protein biosynthesis in both strains. However, differences between both nitrogen conditions were significant only in the phycoerythrin-deficient strain. In the wild strain, effects of kinetin on concentrations of phycobiliproteins were not significant in both nitrogen conditions, except for chlorophyll content. However, the phycoerythrin-deficient strain showed an opposite response, and kinetin stimulated the phycobiliprotein biosynthesis, with the highest concentrations of phycoerythrin in N-saturated medium, while the highest concentrations of allophycocyanin and phycocyanin were observed in N-limited medium. These results indicate that the effects of kinetin on growth, morphology, protein and phycobiliprotein contents are influenced by nitrogen availability, and the main nitrogen storage pools in phycoerythrin-deficient strain of H. musciformis submitted to N-limited conditions were phycocyanin and allophycocianin, the biosynthesis of which was enhanced by kinetin.