51 resultados para NEURAL NETWORK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several accounts put forth to explain the flash-lag effect (FLE) rely mainly on either spatial or temporal mechanisms. Here we investigated the relationship between these mechanisms by psychophysical and theoretical approaches. In a first experiment we assessed the magnitudes of the FLE and temporal-order judgments performed under identical visual stimulation. The results were interpreted by means of simulations of an artificial neural network, that wits also employed to make predictions concerning the F LE. The model predicted that a spatio-temporal mislocalisation would emerge from two, continuous and abrupt-onset, moving stimuli. Additionally, a straightforward prediction of the model revealed that the magnitude of this mislocalisation should be task-dependent, increasing when the use of the abrupt-onset moving stimulus switches from a temporal marker only to both temporal and spatial markers. Our findings confirmed the model`s predictions and point to an indissoluble interplay between spatial facilitation and processing delays in the FLE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several popular Machine Learning techniques are originally designed for the solution of two-class problems. However, several classification problems have more than two classes. One approach to deal with multiclass problems using binary classifiers is to decompose the multiclass problem into multiple binary sub-problems disposed in a binary tree. This approach requires a binary partition of the classes for each node of the tree, which defines the tree structure. This paper presents two algorithms to determine the tree structure taking into account information collected from the used dataset. This approach allows the tree structure to be determined automatically for any multiclass dataset.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an automatic method to detect and classify weathered aggregates by assessing changes of colors and textures. The method allows the extraction of aggregate features from images and the automatic classification of them based on surface characteristics. The concept of entropy is used to extract features from digital images. An analysis of the use of this concept is presented and two classification approaches, based on neural networks architectures, are proposed. The classification performance of the proposed approaches is compared to the results obtained by other algorithms (commonly considered for classification purposes). The obtained results confirm that the presented method strongly supports the detection of weathered aggregates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a study on wavelets and their characteristics for the specific purpose of serving as a feature extraction tool for speaker verification (SV), considering a Radial Basis Function (RBF) classifier, which is a particular type of Artificial Neural Network (ANN). Examining characteristics such as support-size, frequency and phase responses, amongst others, we show how Discrete Wavelet Transforms (DWTs), particularly the ones which derive from Finite Impulse Response (FIR) filters, can be used to extract important features from a speech signal which are useful for SV. Lastly, an SV algorithm based on the concepts presented is described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flash points (T(FP)) of hydrocarbons are calculated from their flash point numbers, N(FP), with the relationship T(FP) (K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 In turn, the N(FP) values can be predicted from experimental boiling point numbers (Y(BP)) and molecular structure with the equation N(FP) = 0.987 Y(BP) + 0.176D + 0.687T + 0.712B - 0.176 where D is the number of olefinic double bonds in the structure, T is the number of triple bonds, and B is the number of aromatic rings. For a data set consisting of 300 diverse hydrocarbons, the average absolute deviation between the literature and predicted flash points was 2.9 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a novel method for calculating flash points of acyclic alkanes from flash point numbers, N(FP), which can be calculated from experimental or calculated boiling point numbers (Y(BP)) with the equation N(FP) = 1.020Y(BP) - 1.083 Flash points (FP) are then determined from the relationship FP(K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 For it data set of 102 linear and branched alkanes, the correlation of literature and predicted flash points has R(2) = 0.985 and an average absolute deviation of 3.38 K. N(FP) values can also be estimated directly from molecular structure to produce an even closer correspondence of literature and predicted FP values. Furthermore, N(FP) values provide a new method to evaluate the reliability of literature flash point data.