61 resultados para Myocardial ultrastructure
Resumo:
Purpose. aEuro integral Heart rate variability (HRV) decreases after an acute myocardial infarction (AMI) due to changes in cardiac autonomic balance. The purpose of the present study, therefore, was to evaluate the effects of a progressive exercise protocol used in phase I cardiac rehabilitation on the HRV of patients with post-AMI. Material and methods. aEuro integral Thirty-seven patients who had been admitted to hospital with their first non-complicated AMI were studied. The treated group (TG, n == 21, age == 52 +/-+/- 12 years) performed a 5-day programme of progressive exercise during phase I cardiac rehabilitation, while the control group (CG, n == 16, age == 54 +/-+/- 11 years) performed only respiratory exercises. Instantaneous heart rate (HR) and RR interval were acquired by a HR monitor (Polar (R) A (R) S810i). HRV was analysed by frequency domain methods. Power spectral density was expressed as normalised units (nu) at low (LF) and high (HF) frequencies, and as LF/HF. Results. aEuro integral After 5 days of progressive exercise, the TG showed an increase in HFnu (35.9 +/-+/- 19.5 to 65.19 +/-+/- 25.4) and a decrease in LFnu and LF/HF (58.9 +/-+/- 21.4 to 32.5 +/-+/- 24.1; 3.12 +/-+/- 4.0 to 1.0 +/-+/- 1.5, respectively) in the resting position (p < 0.05). No changes were observed in the CG. Conclusions. aEuro integral A progressive physiotherapeutic exercise programme carried out during phase I cardiac rehabilitation, as supplement to clinical treatment increased vagal and decreased sympathetic cardiac modulation in patients with post-AMI.
Resumo:
Background: Twenty-three patients (median age 23 months) who underwent Fallot`s tetralogy repair were investigated prospectively to detect a possible association between histopathologic myocardial remodeling and echocardiographic findings of systolic or diastolic ventricular dysfunction. Methods: Intraoperatively resected infundibular bands and subendocardial biopsy samples from the right ventricle (RV) and left ventricle were obtained for histopathologic evaluation. Tissue Doppler echocardiographic interrogation of the ventricles was performed before surgery and in the postoperative period. Results: Histopathologic data revealed hypertrophy of the RV cardiomyocytes and increased interstitial collagen in both ventricles. Mean values of RV isovolumic acceleration decreased significantly at the third evaluation compared with the preoperative values (P = .006). RV myocardial fibrosis greater than 8.3% was associated with a probability of altered E` of at least 0.7 (odds ratio = 2.31). Conclusion: Preoperative histologic myocardial remodeling influenced the postoperative RV function in this group of patients with late repair. Further studies are necessary to evaluate the myocardium in younger patients and to define its influence in the long-term follow-up. (J Am Soc Echocardiogr 2010;23:912-8.)
Resumo:
Serum levels of troponin and heart-related fraction of creatine kinase (CK-MB) mass are used as diagnostic and prognostic criteria in myocardial infarction, but the relation between those levels and-the necropsy-determined size of necrosis has not been tested in human beings. In this retrospective study, 1-cm-thick transverse sections of the ventricles were cut from the base to the apex in the necropsy hearts of 27 patients aged 47 to 86 years (mean 66, median 69; 19 men). Total and necrotic areas were measured using a computer-linked image analysis system. The weights of the necrotic areas were also calculated. The correlations of the areas and weights of necrotic myocardium with the highest serum values of CK-MB mass and troponin 1, which had been quantified during life by chemiluminescence immunoassays, were verified by Pearson`s test; results were considered significant at p <= 50.05. Significant correlations were detected between CK-MB mass peak and infarct size (r = 0.63, p < 0.01) and weight (r = 0.69, p < 0.01) and between CK-MB mass and highest troponin level (r = 0.73, p < 0.01); however, the correlations between highest troponin level and myocardial infarct size (r = 0.31, p = 0.11) and weight (r = 0.35, p = 0.07) were small and nonsignificant. In conclusion, despite the well-established role of serum levels of troponin as a diagnostic tool for myocardial infarction, their highest values showed poor correlations with the extent of infarct. In contrast, the highest serum level of CK-MB mass was well correlated with myocardial infarct size. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The biological cause of broiler PSE meat seems to be an excessive release of Ca(2+), promoted by a genetic mutation of ryanodine receptors located in the sarcoplasmic reticulum of skeletal muscle cells. Excessive Ca(2+), associated with protein denaturation in meat, enhances protease activity and influences the functional properties of PSE meat. Twenty-four-hour post-mortem Pectoralis major m. samples exhibited lower values for pH, water-holding capacity, and shear force than did control samples, in contrast to colour (L*) and cooking loss values. Protease activity, measured as myofibril fragmentation index, presented higher values in PSE meat than in control samples. Ultrastructural examination revealed shrinking and depolymerisation of myofilaments and Z-lines disorganisation within the sarcomere in PSE meat. Intense calpain activity was also observed, indicating that the process may initiate at the filaments, because of protein denaturation, and spread through Z-lines, resulting in the collapse of the sarcomere structure. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The nerve terminals of intrinsic muscular fibers of the tongue of adult wistar rats was studied by using silver impregnation techniques, transmission electron microscopy (TEM), and high resolution scanning electron microscopy (HRSEM) to observe the nerve fibers and their terminals. Silver impregnation was done according to Winkelman and Schmit, 1957. For TEM, small blocks were fixed in modified Karnovsky solution, postfixed in 1% buffered osmium tetroxide solution, and embedded in Spurr resin. For HRSEM, the parts were fixed in 2% osmium tetroxide solution with 1/15 M sodium phosphate buffer (pH 7.4) at 4 degrees C for 2 h, according to the technique described by Tanaka, 1989. Thick myelinated nerve bundles were histologically observed among the muscular fibers. The intrafusal nerve fiber presented a tortuous pathway with punctiform terminal axons in clusters contacting the surface of sarcolemma. Several myelinated nerve fibers involved by collagen fibers of the endoneurium were observed in HRSEM in three-dimensional aspects. The concentric lamellae of the myelin sheath and the axoplasm containing neurofilaments interspersed among the mitochondria were also noted. In TEM, myofibrils, mitochondria, rough endoplasmic reticulum, Golgi`s apparatus, and glycogen granules were observed in sarcoplasm. It is also noted that the sarcomeres constituted by myofilaments with their A, I, and H bands and the electron dense Z lines. In areas adjacent to muscular fibers, there were myelinated and unmyelinated nerve fibers involved by endoneurium and perineurium. In the region of the neuromuscular junction, the contact with the sarcolemma of the muscular cell occurs forming several terminal buttons and showing numerous evaginations of the cell membrane. In the terminal button, mitochondria and numerous synaptic vesicles were observed. Microsc. Res. Tech. 72:464-470, 2009. (C) 2009 Wiley-Liss. Inc.
Resumo:
The aim of this study was to evaluate in vitro the effect of different in-office bleaching systems on the surface morphology of bovine dentin. Thirty tooth fragments measuring 4 x 4mm, containing enamel and dentin, were obtained from the crowns of extracted bovine incisors. Samples were subjected to simulated intracoronal bleaching techniques using conventional (Opalescence Endo (R) and Whiteness Super Endo (R)) and light-activated systems (Opalescence Xtra (R) and Whiteness HP Maxx (R)). Controls were treated with either sodium perborate mixed with 10% hydrogen peroxide or no bleaching agent. The samples were observed under SEM and the recorded images were evaluated for topographic alterations. The ultrastructural alterations of dentin observed in this study varied greatly between groups according to the products used. Higher pH products (Whiteness HP Maxx (R) and Opalescence Xtra (R)) associated with in-office techniques yielded better maintenance of dentin ultrastructure. Apparently, both low pH and hydrogen peroxide oxidation play a role in altering the ultrastructure of dentin during internal dental bleaching. The use of alkaline products with reduced time of application (in-office techniques) may decrease such morphological alterations.
Resumo:
The present study is part of an ongoing investigation into the characteristics of Myxozoan parasites of Brazilian freshwater fish and was carried out using morphology, histopathology and electron microscopy analysis. A new Myxosporea species (Henneguya pseudoplatystoma) is described causing an important reduction in gill function in the farmed pintado (a hybrid fish from a cross between Pseudoplatystoma corruscans and Pseudoplatystoma fasciatum), which is a commercially important South American catfish. From a total of 98 pintado juveniles from fish farms in the states of Sao Paulo and Mato Grosso do Sul (Brazil), 36 samples (36.7%) exhibited infection of the gill filaments. infection was intense, with several plasmodia occurring on a same gill filament. The plasmodia were white and measured up to 0.5 mm in length; mature spores were ellipsoidal in the frontal view, measuring 33.2 +/- 1.9 mu m in total length, 10.4 +/- 0.6 mu m in body length, 3.4 +/- 0.4 mu m in width and 22.7 +/- 1.7 mu m in the caudal process. The polar capsules were elongated, measuring 3.3 +/- 0.4 mu m in length and 1.0 +/- 0.1 mu m in width and the polar filaments had six to seven turns. Histopathological analysis revealed the parasite in the connective tissue of the gill filaments and lamella. No inflammatory process was observed, but the development of the plasmodia reduced the area of functional epithelium. Ultrastructural analyses revealed a single plasmodial wall, which was in direct contact with the host cells and had numerous projections in direction of the host cells as well as extensive pinocytotic canals. A thick layer (2-6 mu m) of fibrous material and numerous mitochondria were found in the ectoplasm. Generative cells and the earliest stage of sporogenesis were seen more internally. Advanced spore developmental stages and mature spores were found in the central portion of the plasmodia. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The etiology of idiopathic peripheral facial palsy (IPFP) is still uncertain; however, some authors suggest the possibility of a viral infection. Aim: to analyze the ultrastructure of the facial nerve seeking viral evidences that might provide etiological data. Material and Methods: We studied 20 patients with peripheral facial palsy (PFP), with moderate to severe FP, of both genders, between 18-60 years of age, from the Clinic of Facial Nerve Disorders. The patients were broken down into two groups - Study: eleven patients with IPFP and Control: nine patients with trauma or tumor-related PFP. The fragments were obtained from the facial nerve sheath or from fragments of its stumps - which would be discarded or sent to pathology exam during the facial nerve repair surgery. The removed tissue was fixed in 2% glutaraldehyde, and studied under Electronic Transmission Microscopy. Results: In the study group we observed an intense repair cellular activity by increased collagen fibers, fibroblasts containing developed organelles, free of viral particles. In the control group this repair activity was not evident, but no viral particles were observed. Conclusion: There were no viral particles, and there were evidences of intense activity of repair or viral infection.
Resumo:
Objective: The aim of this study was to investigate the effects of exercise training on cardiovascular autonomic dysfunction in ovariectomized rats submitted to myocardial infarction. Methods: Female Wistar rats were divided into the following ovariectomized groups: sedentary ovariectomized (SO), trained ovariectomized (TO), sedentary ovariectomized infarcted (SOI), and trained ovariectomized infarcted (TOI). Trained groups were submitted to an exercise training protocol on a treadmill (8 wk). Arterial baroreflex sensitivity was evaluated by heart rate responses to arterial pressure changes, and cardiopulmonary baroreflex sensitivity was tested by bradycardic and hypotension responses to serotonin injection. Vagal and sympathetic effects were calculated by pharmacological blockade. Results: Arterial pressure was reduced in the TO in comparison with the SO group and increased in the TOI in relation to the SOI group. Exercise training improved the baroreflex sensitivity in both the TO and TOI groups. The TOI group displayed improvement in cardiopulmonary reflex sensitivity compared with the SOI group at the 16 mu g/kg serotonin dose. Exercise training enhanced the vagal effect in both the TO (45%) and TOI (46%) animals compared with the SO and SOI animals and reduced the sympathetic effect in the TOI (38%) in comparison with the SOI animals. Significant correlations were obtained between bradycardic baroreflex responses and vagal (r = -0.7, P < 0.005) and sympathetic (r = 0.7, P < 0.001) effects. Conclusions: These results indicate that exercise training in ovariectomized rats submitted to myocardial infarction improves resting hemodynamic status and reflex control of the circulation, which may be due to an increase in the vagal component. This suggests a homeostatic role for exercise training in reducing the autonomic impairment of myocardial infarction in postmenopausal women.
Resumo:
P>1. Impairmant of baroreflex sensitivity (BRS) has been implicated in the reduction of heart rate variability (HRV) and in the increased risk of death after myocardial infarction (MI). In the present study, we investigated whether the additional impairment in BRS induced by sinoaortic baroreceptor denervation (SAD) in MI rats is associated with changes in the low-frequency (LF) component of HRV and increased mortality rate. 2. Rats were randomly divided into four groups: control, MI, denervated (SAD) and SAD + MI rats. Left ventricular (LV) function was evaluated by echocardiography. Autonomic components were assessed by power spectral analysis and BRS. 3. Myocardial infarction (90 days) reduced ejection fraction (by similar to 42%) in both the MI and SAD + MI groups; however, an increase in LV mass and diastolic dysfunction were observed only in the SAD + MI group. Furthermore, BRS, HRV and the LF power of HRV were reduced after MI, with an exacerbated reduction seen in SAD + MI rats. The LF component of blood pressure variability (BPV) was increased in the MI, SAD and SAD + MI groups compared with the control group. Mortality was higher in the MI groups compared with the non-infarcted groups, with an additional increase in mortality in the SAD + MI group compared with the MI group. Correlations were obtained between BRS and the LF component of HRV and between LV mass and the LF component of BPV. 4. Together, the results indicate that the abolishment of BRS induced by SAD in MI rats further reduces the LF band of HRV, resulting in a worse cardiac remodelling and increased mortality in these rats. These data highlight the importance of this mechanism in the prognosis of patients after an ischaemic event.
Resumo:
In this study, we investigated the oxidative stress influence in some prosurvival and proapoptotic proteins after myocardial infarction (MI). Male Wistar rats were divided in two groups: Sham-operated (control) and MI. MI was induced by left coronary artery occlusion. 28-days after surgery, echocardiographic, morphometric, and hemodynamic parameters were evaluated. Redox status (reduced to oxidized glutathione ratio, GSH/GSSG) and hydrogen peroxide levels (H(2)O(2)) were measured in heart tissue. The p-ERK/ERK, p-Akt/Akt, p-mTOR/mTOR and p-GSK-3 beta/GSK-3 beta ratios, as well as apoptosis-inducing factor (AIF) myocardial protein expression were quantified by Western blot. MI group showed an increase in cardiac hypertrophy (23%) associated with a decrease in ejection fraction (38%) and increase in left ventricular end-diastolic pressure (82%) when compared to control, characterizing ventricular dysfunction. Redox status imbalance was seen in MI animals, as evidenced by the decrease in the GSH/GSSG ratio (30%) and increased levels of H(2)O(2) (45%). This group also showed an increase in the ERK phosphorylation and a reduction of Akt and mTOR phosphorylation when compared to control. Moreover, we showed a reduction in the GSK-3 beta phosphorylation and an increase in AIF protein expression in MI group. Taken together, our results show increased H(2)O(2) levels and cellular redox imbalance associated to a higher p-ERK and AIF immunocontent, which would contribute to a maladaptive hypertrophy phenotype.
Resumo:
Our aim was to evaluate the effects of granulocyte colony-stimulating factor (G-CSF) on early cardiac arrhythmias after myocardial infarction (MI) and the impact on survival. Male Wistar rats received repeated doses of 50 mu g/kg G-CSF (MI-GCSF group) or vehicle (MI group) at 7, 3, and 1 days before surgery. MI was induced by permanent occlusion of left corollary artery. The electrocardiogram was obtained before occlusion and then for 30 minutes after surgery. Events and duration of ventricular arrhythmias were analyzed. The levels of connexin43 (Cx43) were measured by Western blot immediately before MI production. Survival was significantly increased in MI-GCSF pretreated group (74% versus 52.0% MI. P < 0.05). G-CSF pretreatment also significantly reduced the ventricular premature beats when compared with the untreated-MI group (201 +/- 47 versus 679 +/- 117, P < 0.05). The number and the duration of ventricular tachycardia were smaller in the MI-G-CSF group, as well as the number of ventricular fibrillation episodes (10% versus 69% in NIL P < 0.05). Cx43 levels were significantly increased by G-CSF treatment (1.27 +/- 0.13 versus 0.86 +/- 0.11; P < 0.05). The MI size 24 hours after occlusion was reduced by G-CSF pretreatment (36 +/- 3% versus 44 +/- 2% of left ventricle in MI group; P < 0.05). The increase of Cx43 expression in the heart may explain the reduced incidence in ventricular arrhythmias in the early phases after coronary artery occlusion in rats, thus increasing survival after MI.
Resumo:
Exposure to a high glucose medium or diabetes has been found to protect the heart against ischaemia. The activation of antiapoptotic and proliferative factors seems to be involved in this cardioprotection. This study was designed to evaluate the role of hyperglycaemia in cardiac function, programmed cell survival, and cell death in diabetic rats after myocardial infarction (MI). Male Wistar rats were divided into four groups (n = 8): control (C), diabetic (D), myocardial infarcted (MI), and diabetic myocardial infarcted (DI). The following measures were assessed in the left ventricle: size of MI, systolic and diastolic function by echocardiography, cytokines by ELISA (TNF-alpha, IL-1 beta, IL-6, and IL-10), gene expression by real-time PCR (Bax, Fas, p53, Bcl-2, HIF1-alpha, VEGF, and IL8r), caspase-3 activity by spectrofluorometric assay, glucose transporter type 1 and 4 (GLUT-1 and GLUT-4) protein expression by western blotting, and capillary density and fibrosis by histological analysis. Systolic function was improved by hyperglycaemia in the DI group, and this was accompanied by no improvement in diastolic dysfunction, a reduction of 36% in MI size, reduced proinflammatory cytokines, apoptosis activation, and an increase in cell survival factors (HIF1-alpha, VEGFa and IL8r) assessed 15 days post-MI. Moreover, hyperglycaemia resulted in angiogenesis (increased capillary density) before and after MI, accompanied by a reduction in fibrosis. Together, these results suggest that greater plasticity and cellular resistance to ischaemic injury result from chronic diabetic hyperglycaemia in rat hearts.
Resumo:
Background/Aim: Nitric oxide (NO) modulates the expression of the chaperone Hsp72 in the heart, and exercise stimulates both NO production and myocardial Hsp72 expression. The main purpose of the study was to investigate whether NO interferes with an exercise-induced myocardial Hsp72 expression. Methods: Male Wistar rats (70-100 days) were divided into control (C, n= 12), L-NAME-treated (L, n= 12), exercise (E, n= 13) and exercise plus L-NAME-treated (EL, n= 20) groups. L-NAME was given in drinking water (700 mg. L(-1)) and the exercise was performed on a treadmill (15-25 m.min(-1), 40-60 min. day(-1)) for seven days. Left ventricle (LV) protein Hsp content, NOS and phosphorylated-NOS (p-NOS) isoforms were measured using Western blotting. The activity of NOS was assayed in LV homogenates by the conversion of [(3)H] L-arginine to [(3)H] L-citrulline. Results: Hsp72 content was increased significantly (223%; p < 0.05) in the E group compared to the C group, but exercise alone did not alter the NOS content, p-NOS isoforms or NOS activity. Contrary to our expectation, L-NAME enhanced (p < 0.05) the exercise-induced Hsp72 content (EL vs. C, L and E groups = 1019%, 548% and 457%, respectively). Although the EL group had increased stimulatory p-eNOS(Ser1177) (over 200%) and decreased inhibitory p-nNOS(Ser852) (similar to 50%) compared to both the E and L groups (p < 0.05), NOS activity was similar in all groups. Conclusions: Our results suggest that exercise-induced cardiac Hsp72 expression does not depend on NO. Conversely, the in vivo L-NAME treatment enhances exercise-induced Hsp72 production. This effect may be due to an increase in cardiac stress. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.