79 resultados para MOLECULAR-WEIGHT KININOGEN
Resumo:
The main aim was to identify the active compound against Rhizoctonia solani produced by the cassava endophyte Paenibacillus sp. IIRAC-30. The compounds produced were extracted with ethyl acetate and purified by Sephadex column prior to analysis by Q-TOF mass spectrometry. A C(15)-lipopeptide with an estimated molecular weight of 1036 Da and homologues were identified. The lipopeptide had a cyclic structure, which was deduced by interpreting the ESI-MS/MS spectra of main protonated homologues containing 15:0 FA, and the amino acid composition was Glu-Leu-Leu-Val-Asp-Leu-Leu. Therefore, the lipopeptides produced by isolate IIRAC-30 was characterized as a surfactin series. Thus, the main mechanism used by Paenibacillus sp. IIRAC-30 to suppress R. solani was elucidated. Furthermore, because lipopeptides active against phytopathogens generally show low toxicity to humans and the environment, the positive findings presented here suggest that the isolate IIRAC-30 could be a possible candidate for biocontrol of R. solani.
Resumo:
The interactions between phosphorylcholine-substituted chitosans (PC-CH) and calf-thymus DNA (ct-DNA) were investigated focusing on the effects of the charge ratio, the pH, and phosphorylcholine content on the size and stability of the complexes using the ethidium bromide fluorescence assay, gel electrophoresis, dynamic light scattering. and fluorescence microscopy. The size and colloidal stability of deacetylated chitosan (CH/DNA) and PC-CH/DNA complexes were strongly dependent on phosphorylcholine content, charge ratios, and pH. The interaction strengths were evaluated from ethidium bromide fluorescence, and at N/P ratios higher than 5.0, no DNA release was observed in any synthesized PC-CH/DNA polyplexes by gel electrophoresis. The PC-CH/DNA polyplexes exhibited a higher resistance to aggregation compared to deacetylated chitosan (CH) at neutral pH. At low pH values highly charged chitosan and its phosphorylcholine derivatives had strong binding affinity with DNA, whereas at higher pH Values CH formed large aggregates and only C-CH derivatives were able to form small nanoparticles with hydrodynamic radii varying from 100 to 150 nm. Nanoparticles synthesized at low ionic strength with PC-CH derivatives containing moderate degrees of substitution (DS = 20% and 40%) remained stable for weeks. Photomicroscopies also confirmed that rhodamine-labeled PC(40)CH derivative nanoparticles presented higher colloidal stability than those synthesized using deacetylated chitosan. Accordingly, due to their improved physicochemical properties these phosphorylcholine-modified chitosans provide new perspectives for controlling the properties of polyplexes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
An extracellular polygalacturonase (PG) produced from Paecilomyces variotii was purified to homogeneity through two chromatography steps using DEAE-Fractogel and Sephadex G-100. The molecular weight of P. variotii PG was 77,300 Da by gel filtration and SDS-PAGE. PG had isoelectric point of 4.37 and optimum pH 4.0. PG was very stable from pH 3.0 to 6.0. The extent of hydrolysis of different pectins by the purified enzyme was decreased with an increase in the degree of esterification. PG had no activity toward non-pectic polysaccharides. The apparent K (m) and V (max) values for hydrolyzing sodium polypectate were 1.84 mg/mL and 432 A mu mol/min/mg, respectively. PG was found to have temperature optimum at 65 A degrees C and was totally stable at 45 A degrees C for 90 min. Half-life at 55 A degrees C was 50.6 min. Almost all the examined metal cations showed partial inhibitory effects under enzymatic activity, except for Na(+1), K(+1), and Co(+2) (1 mM) and Cu(+2) (1 and 10 mM).
Resumo:
OBJECTIVE: We evaluated whether vaginal concentrations of hyaluronan were altered in women with recurrent vulvovaginal candidiasis (RVVC). STUDY DESIGN: Lavage samples from 17 women with acute RVVC, 27 women who were receiving a maintenance antifungal regimen, and 24 control women were tested for hyaluronan and interleukin (IL)-6, IL-12, and IL-23 by enzyme-linked immunosorbent assay. RESULTS: Median vaginal hyaluronan concentrations were 33.8 ng/mL (range, 21.6-66.3 ng/mL) in women with acute RVVC, 15.0 ng/mL (range, 11.2-50.6 ng/mL) in women who were receiving maintenance therapy, and 4.2 ng/mL (range, 3.6-12.0 ng/mL) in control subjects (P <= .02). The vaginal hyaluronan concentration was 27.4 ng/mL (range, 15.4-37.7 ng/mL) when Candida was detected by microscopy and 9.5 ng/mL (range, 7.7-14.6 ng/mL) in microscopy-negative cases (P = .0354). Elevated hyaluronan levels were associated with itching plus burning (40.7 ng/mL) or itching plus discharge (42.1 ng/mL), as opposed to itching only (6.2 ng/mL; P = .0152). Hyaluronan and IL-6 levels were correlated (P = .0009). CONCLUSION: Hyaluronan release is a component of the host response to a candidal infection and may contribute to symptoms.
Resumo:
Allergic contact dermatitis is the consequence of an immune reaction mediated by T cells against low molecular weight chemicals known as haptens. It is a common condition that occurs in all races and age groups and affects the quality of life of those who present it. The immunological mechanism of this disease has been reviewed in recent decades with significant advance in its understanding. The metabolism and pathway of the haptens as well as the activation and mechanism of action of the cells responsible for both the immune reaction and its completion are discussed in this article.
Resumo:
Mutations in PKD2 are responsible for approximately 15% of the autosomal dominant polycystic kidney disease cases. This gene encodes polycystin-2, a calcium-permeable cation channel whose C-terminal intracytosolic tail (PC2t) plays an important role in its interaction with a number of different proteins. In the present study, we have comprehensively evaluated the macromolecular assembly of PC2t homooligomer using a series of biophysical and biochemical analyses. Our studies, based on a new delimitation of PC2t, have revealed that it is capable of assembling as a homotetramer independently of any other portion of the molecule. Our data support this tetrameric arrangement in the presence and absence of calcium. Molecular dynamics simulations performed with a modified all-atoms structure-based model supported the PC2t tetrameric assembly, as well as how different populations are disposed in solution. The simulations demonstrated, indeed, that the best-scored structures are the ones compatible with a fourfold oligomeric state. These findings clarify the structural properties of PC2t domain and strongly support a homotetramer assembly of PC2.
Resumo:
Background: Enoxaparin was superior to unfractionated heparin (UFH), regardless of fibrinolytic agent in ST-elevation myocardial infarction (STEMI) patients receiving fibrinolytic therapy in ExTRACT-TIMI 25 (Enoxaparin and Thrombolysis Reperfusion for Acute Myocardial Infarction Treatment Thrombolysis in Myocardial Infarction 25) trial. Objective: This post hoc analysis compared outcomes with streptokinase plus enoxaparin to the standard regimen of fibrin-specific lytic (FSL) plus UFH and to the newer combination of FSL plus enoxaparin. Methods: In ExTRACT-TIMI 25, STEMI patients received either streptokinase or a FSL (alteplase, reteplase or tenecteplase) at the physician`s discretion and were randomized to enoxaparin or UFH, stratified by fibrinolytic type. Thirty-day outcomes were adjusted for baseline characteristics, region, in-hospital percutaneous coronary intervention (PCI) and a propensity score for the choice of lytic. Results: The primary trial endpoint of 30-day death/myocardial infarction (MI) occurred in fewer patients in the streptokinase-enoxaparin cohort (n = 2083) compared with FSL-UFH (n = 8141) [10.2% vs 12.0%, adjusted odds ratio [OR(adj)] 0.76; 95% CI 0.62, 0.93; p = 0.008]. Major bleeding was significantly increased with streptokinase-enoxaparin compared with FSL-UFH (ORadj 2.74; 95% CI 1.81; 4.14; p < 0.001) but intracranial haemorrhage (ICH) was similar (OR(adj) 0.90; 95% CI 0.40, 2.01; p = 0.79). Net clinical outcomes, defined as either death/MI/major bleeding or as death/MI/ICH tended to favour streptokinase-enoxaparin compared with FSL-UFH (OR(adj) 0.88; 95% CI 0.73, 1.06; p = 0.17; and OR(adj) 0.77; 95% CI 0.63, 0.93; p = 0.008, respectively). Patients receiving FSL-enoxaparin (n = 8142) and streptokinase-enoxaparin therapies experienced similar adjusted rates of the primary endpoint (OR(adj) 1.08; 95% CI 0.87, 1.32; p = 0.49) and net clinical outcomes. Conclusions: Our results suggest that fibrinolytic therapy with the combination of streptokinase and the potent anticoagulant agent enoxaparin resulted in similar adjusted outcomes compared with more costly regimens utilizing a FSL.
Resumo:
The microtubule-associated protein Tau promotes the assembly and stability of microtubules in neuronal cells. Six Tau isoforms are expressed in adult human brain. All six isoforms become abnormally hyperphosphorylated and form neurofibrillary tangles in Alzheimer disease (AD) brains. In AD, reduced activity of phospholipase A(2) (PLA(2)), specifically of calcium-dependent cytosolic PLA(2) (cPLA(2)) and calcium-independent intracellular PLA(2) (iPLA(2)), was reported in the cerebral cortex and hippocampus, which positively correlated with the density of neurofibrillary tangles. We previously demonstrated that treatment of cultured neurons with a dual cPLA(2) and iPLA(2) inhibitor, methyl arachidonyl fluorophosphonate (MAFP), decreased total Tau levels and increased Tau phosphorylation at Ser(214) site. The aim of this study was to conduct a preliminary investigation into the effects of in vivo infusion of MAFP into rat brain on PLA(2) activity and total Tau levels in the postmortem frontal cortex and dorsal hippocampus. PLA(2) activity was measured by radioenzymatic assay and Tau levels were determined by Western blotting using the anti-Tau 6 isoforms antibody. MAFP significantly inhibited PLA(2) activity in the frontal cortex and hippocampus. The reactivity to the antibody revealed three Tau protein bands with apparent molecular weight of close to 40, 43 and 46 kDa in both brain areas. MAFP decreased the 46 kDa band intensity in the frontal cortex, and the 43 and 46 kDa band intensities in the hippocampus. The results indicate that in vivo PLA(2) inhibition in rat brain decreases the levels of total (nonphosphorylated plus phosphorylated) Tau protein and corroborate our previous in vitro findings.
Resumo:
An L-amino acid oxidase (BjarLAAO-I) from Bothrops jararaca snake venom was highly purified using a stepwise sequential chromatography on Sephadex G-75, Benzamidine Sepharose and Phenyl Sepharose. Purified BjarLAAO-I showed a molecular weight around 60,000 under reducing conditions and about 125,000 in the native form, when analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. BjarLAAO-I is a homodimeric acidic glycoprotein, pI similar to 5.0, and N-terminal sequence showing close structural homology with other snake venom LAAOs. The purified enzyme catalysed the oxidative deamination of L-amino acids, the most specific substrate being L-Phe. Five amino acids, L-Ser, L-Pro, L-Gly, L-Thr and L-Cys were not oxidized, clearly indicating a significant specificity. BjarLAAO-I significantly inhibited Ehrlich ascites tumour growth and induced an influx of polymorphonuclear cells, as well as spontaneous liberation of H(2)O(2) from peritoneal macrophages. Later, BjarLAAO-I induced mononuclear influx and peritoneal macrophage spreading. Animals treated with BjarLAAO-I showed higher survival time.
Resumo:
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The gelatin prepared from the skins of the Atlantic halibut (Hippoglossus hippoglossus) was investigated for the development of edible films plasticized with 30g sorbitol/100g gelatin. Two types of dry gelatin preparations were obtained depending on whether an intermediate evaporation step at 60 degrees C in the drying procedure is included or not. The amino acid composition, molecular weight distribution (determined by SDS-polyacrylamide gel electrophoresis) and glass transition temperature (determined by differential scanning calorimetry) of the gelatins were determined and related to some physical properties of the resulting films. The gelatin extracted from the halibut skins showed a suitable filmogenic capacity, leading to transparent, weakly colored, water-soluble and highly extensible films. The intermediate evaporation step at 60 degrees C induced thermal protein degradation, causing the resulting films to be significantly less resistant and more extensible. No differences in water vapor permeability, viscoelasticity, glass transition or color properties were evidenced between the two gelatins tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.
Resumo:
Levels of autoantibodies to oxidized low-density lipoprotein (oxLDL) have been correlated to atherosclerosis; however, contradictory results have been shown. To better understand the role of autoantibodies to oxLDL in atherogenesis, and their potential to predict risk of developing coronary artery disease we investigated the antibody response of unstable angina (UA) patients and healthy controls against chromatographic separated fractions of oxLDL. Five major peaks were detected after chromatographic separation of oxLDL and 10 fractions were collected. Surprisingly, when the response to high molecular weight fractions was analysed, we observed a significant increase in the levels of autoantibodies in controls compared to UA. In contrast, when the autoantibody response to intermediate and low molecular weight fractions was analysed, we observed that the UA group showed consistently higher levels compared with controls. Our data demonstrates that within oxLDL there are major fractions that can be recognized by autoantibodies from either UA patients or healthy individuals, and that the use of total oxLDL as an antigen pool may mask the presence of some antigenic molecules and their corresponding antibodies. Further studies are needed, but the analysis of antibody profiles may indeed open up a novel approach for evaluation and prevention against atherosclerosis.
Resumo:
Polyhydroxyalcanoates copolymers with 3-hydroxybutirate (3HB) and 3-hydroxyvalerate (3HV) co-monomers, P3(HB-co-x%HV), were produced in fed-batch culture by Ralstonia eutropha DSM428 using fructose as a single carbon source in the first step and adding propionic acid in the second step by alternating feeding. Polymer yield was 0.18 g/L with a content of 24 mol% of the 3HV fraction determined by H-1 NMR. NMR measurements indicated that the polymer obtained is isotactic. The copolymer attained 35% of crystallinity according to X-ray diffraction measurements, and two (020) planes were observed. Thermal behavior presented melting temperature at 154 degrees C and the crystallization temperature was 65 degrees C. A glass transition temperature was observed at -10 degrees C. Average molecular weight measured by GPC was 4.9 x 10(5) Dalton. Isothermal radial growth rates of spherulites of P3(HB-co-24%HV) were studied. All experimental facts and the analysis of the sequence distribution of diads and triads of 3HB and 3HV units led to the conclusion that it is not a completely statistical random copolymer once it contains different types of segments. POLYM.
Resumo:
Poly(3-hydroxybutyrate) was produced in fed-batch cultures of Ralstonia eutropha DSM 428 and Alcaligenes latus ATCC 29712 on a mineral medium with different carbon sources such as sucrose, sodium lactate, lactic acid, soybean oil and fatty acid. The bacteria converted the different carbon sources supplied into P3HB. The best results were obtained when lactate or soybean oil were supplied as the sole carbon source. The range of number average molar mass (Mn) for the polymers, analyzed by Gel Permeation Chromatography was 1.65 to 0.79 x 10(5) g mol(-1). FTIR spectroscopy revealed a characteristic absorbance associated with polyester structures. The crystallinity degree, determinate from X-ray diffractograms, was about 69% in all synthesized polymers. The thermal properties associated to semicrystalline polymers indicated a glass transition at 0.1 degrees C and a melting point at about 175 degrees C and enthalpy of 63-89 J g(-1). The (1)H-NMR and (13)C-NMR spectra of the polymers were in agreement with the calculated chemical shifts associated with P3HB structures.