51 resultados para Hybridation in situ
Resumo:
Felsic microgranular enclaves with structures indicating that they interacted in a plastic state with their chemically similar host granite are abundant in the Maua Pluton, SE Brazil. Larger plagioclase xenocrysts are in textural disequilibrium with the enclave groundmass and show complex zoning patterns with partially resorbed An-rich cores (locally with patchy textures) surrounded by more sodic rims. In situ laser ablation-(multi-collector) inductively coupled plasma mass spectrometry trace element and Sr isotopic analyses performed on the plagioclase xenocrysts indicate open-system crystallization; however, no evidence of derivation from more primitive basic melts is observed. The An-rich cores have more radiogenic initial Sr isotopic ratios that decrease towards the outermost part of the rims, which are in isotopic equilibrium with the matrix plagioclase. These profiles may have been produced by either (1) diffusional re-equilibration after rim crystallization from the enclave-forming magma, as indicated by relatively short calculated residence times, or (2) episodic contamination with a decrease of the contaminant ratio proportional to the extent to which the country rocks were isolated by the crystallization front. Profiles of trace elements with high diffusion coefficients would require unrealistically long residence times, and can be modeled in terms of fractional crystallization. A combination of trace element and Sr isotope data suggests that the felsic microgranular enclaves from the Maua Pluton are the products of interaction between end-member magmas that had similar compositions, thus recording `self-mixing` events.
Resumo:
In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 mu g of sample. The in situ fusion was accomplished using 10 mu L of a flux mixture 4.0% m/v Na(2)CO(3) + 4.0% m/v ZnO + 0.1% m/v Triton (R) X-100 added over the cement sample and heated at 800 degrees C for 20 s. The resulting mould was completely dissolved with 10 mu L of 0.1% m/v HNO(3). Limits of detection were 0.11 mu g g(-1) for Co, 1.1 mu g g(-1) for Cr and 1.9 mu g g(-1) for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student`s t-test, p<0.05). In general, the relative standard deviation was lower than 12% (n = 5). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
n-Butanethiol is generated in situ by sequential addition of n-butyllithium and water to elemental sulfur. The n-butanethiol formed was reacted with electron-deficient olefines to give Michael-type addition products in good yields. The method avoids the manipulation of the bad-smelling n-butanethiol.
Resumo:
Purpose: The aim of this in situ double-blind randomised crossover study was to investigate the effect of calcium (Ca) pre-rinse on the composition of plaque and on enamel prior to the use of fluoride (F) dentifrice. Materials and Methods: During four phases (14 days each) of this study, 10 volunteers had agreed to wear dental appliances containing two healthy bovine enamel blocks. A fresh solution containing 20% weight/volume (w/v) sucrose was dripped on the enamel blocks ex vivo for 5 min three times a day. Subsequently, the appliances were replaced in the mouth, and the volunteers rinsed their mouth with 10 mL of a Ca (150 mmol/L) or a placebo rinse (1 min). In sequence, a slurry (1:3 w/v) of F (1030 ppm) or placebo dentifrice was dripped onto the blocks ex vivo for 1 min. During this time, the volunteers brushed their teeth with the respective dentifrice. The appliances were replaced in the mouth, and the volunteers rinsed their mouth with water. The plaque formed on the blocks was analysed for F and Ca. The enamel demineralisation as well as the incorporation of F on enamel was evaluated by cross-sectional microhardness and alkali-soluble F analysis, respectively. Data were tested using analysis of variance (P < 0.05). Results: The Ca pre-rinse prior to the use of the F dentifrice led to a three- and sixfold increase in the plaque F and Ca concentrations, respectively. It also did not have any additive effect on the F content on the enamel and the demineralisation of the enamel, in comparison with the use of F dentifrice alone. Conclusions: A Ca lactate rinse used prior to the F dentifrice was able to change the mineral content in the plaque, but it was unable to prevent enamel demineralisation.
Resumo:
The ethanol oxidation reaction (EOR) was investigated using PtSnCe/C electrocatalysts in different mass ratios (72:23:5, 68:22:10 and 64:21:15) that were prepared by the polymeric precursor method. Transmission electron microscopy (TEM) showed that the particles ranged in size from approximately 2 to 5 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn and Ce into the Pt crystalline network with the formation of an alloy between Pt, Sn and/or Ce. Among the PtSnCe catalysts investigated, the 68:22:10 composition showed the highest activity toward ethanol oxidation, and the current time curves obtained in the presence of ethanol in acidic media showed a current density 50% higher than that observed for commercial PtSn/C (E-Tek). During the experiments performed on single direct ethanol fuel cells, the power density for the PtSnCe/C 68:22:10 anode was nearly 40% higher than the one obtained using the commercial catalyst. Data from Fourier transform infrared (FTIR) spectroscopy showed that the observed behavior for ethanol oxidation may be explained in terms of a double mechanism. The presence of Sn and Ce seems to favor CO oxidation, since they produce an oxygen-containing species to oxidize acetaldehyde to acetic acid. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Although Pt has been thoroughly studied regarding its activity for the borohydride oxidation reaction (BOR), the BOR mechanism at Pt remains unclear: Depending on the applied potential, spontaneous BH(4)(-) hydrolysis can compete with the direct BOR. The goal of the present work is to provide more insight into the behavior of smooth Pt electrodes toward the BOR, by coupling in situ infrared reflectance spectroscopy with electrochemistry. The measurements were performed on a Pt electrode in 1 M NaOH/1 M NaBH(4), so as to detect the reaction intermediate species generated as a function of the applied potential. Several bands were monitored in the B-H ((v) over bar approximate to 1180, 1080, and 972 cm(-1)) and B-O ((v) over bar = 1325 and similar to 1425 cm(-1)) bond regions upon increased electrode polarization. These absorption bands, which appear sequentially and were already detected for similar measurements on Au electrodes, are assigned to BH(3), BH(2), and BO(2)(-) species. In light of these experimental data and previous results obtained in our group for Pt- or Au-based electrodes, possible initial elementary steps of the BOR on platinum electrodes are proposed and discussed according to the relevant literature data.