82 resultados para Forest of altitude


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soil compaction that follows the clearing of tropical forest for cattle pasture is associated with lower soil hydraulic conductivity and increased frequency and volume of overland flow. We investigated the frequency of perched water tables, overland flow and stormflow in an Amazon forest and in an adjacent 25-year-old pasture cleared from the same forest. We compared the results with the frequencies of these phenomena estimated from comparisons of rainfall intensity and soil hydraulic conductivity. The frequency of perched water tables based on rainfall intensity and soil hydraulic conductivity was expected to double in pasture compared with forest. This corresponded closely with an approximate doubling of the frequency of stormflow and overland flow in pasture. In contrast, the stormflow volume in pasture increased 17-fold. This disproportional increase of stormflow resulted from overland flow generation over large areas of pasture, while overland flow generation in the forest was spatially limited and was observed only very near the stream channel. In both catchments, stormflow was generated by saturation excess because of perched water tables and near-surface groundwater levels. Stormflow was occasionally generated in the forest by rapid return flow from macropores, while slow return flow from a continuous perched water table was more common in the pasture. These results suggest that deforestation for pasture alters fundamental mechanisms of stormflow generation and may increase runoff volumes over wide regions of Amazonia. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrogen variations at different spatial scales and integrated across functional groups were addressed for lowland tropical forests in the Brazilian Amazon as follows: (1) how does N availability vary across the region over different spatial scales (regional x landscape scale); ( 2) how are these variations in N availability integrated across plant functional groups ( legume 9 non-legume trees). Leaf N, P, and Ca concentrations as well the leaf N isotope ratios (delta(15)N) from a large set of legume and non-legume tree species were measured. Legumes had higher foliar N/Ca ratios than non-legumes, consistent with the high energetic costs in plant growth associated with higher foliar P/Ca ratios found in legumes than in non-legumes. At the regional level, foliar delta(15)N decreased with increasing rainfall. At the landscape level, N availability was higher in the forests on clayey soils on the plateau than in forests on sandier soils. The isotope as well as the non-isotope data relationships here documented, explain to a large extent the variation in delta(15)N signatures across gradients of rainfall and soil. Although at the regional level, the precipitation regime is a major determinant of differences in N availability, at the landscape level, under the same precipitation regime, soil type seems to be a major factor influencing the availability of N in the Brazilian Amazon forest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondonia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of NH4+, Na+, K+, Ca2+ Mg2+,, Cl-, NO3-, SO42- and DOC. The coefficient 3 4 cient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly tow compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall. patterns was Low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of ""hot"" and ""cold"" spots of throughfall. quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition -induced biochemical microhabitats in the soil. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Question: How can the coexistence of savanna and forest in Amazonian areas with relatively uniform climates be explained? Location: Eastern Marajo Island, northeast Amazonia, Brazil. Methods: The study integrated floristic analysis, terrain morphology, sedimentology and delta(13)C of soil organic matter. Floristic analysis involved rapid ecological assessment of 33 sites, determination of occurrence, specific richness, hierarchical distribution and matrix of floristic similarity between paired vegetation types. Terrain characterization was based on analysis of Landsat images using 4(R), 5(G) and 7(B) composition and digital elevation model (DEM). Sedimentology involved field descriptions of surface and core sediments. Finally, radiocarbon dating and analysis of delta(13)C of soil profile organic matter and natural ecotone forest-savanna was undertaken. Results: Slight tectonic subsidence in eastern Marajo Island favours seasonal flooding, making it unsuitable for forest growth. However, this area displays slightly convex-up, sinuous morphologies related to paleochannels, covered by forest. Terra-firme lowland forests are expanding from west to east, preferentially occupying paleochannels and replacing savanna. Slack, running water during channel abandonment leads to disappearance of varzea/gallery forest at channel margins. Long-abandoned channels sustain continuous terra-firme forests, because of longer times for more species to establish. Recently abandoned channels have had less time to become sites for widespread tree development, and are either not vegetated or covered by savanna. Conclusion: Landforms in eastern Marajo Island reflect changes in the physical environment due to reactivation of tectonic faults during the latest Quaternary. This promoted a dynamic history of channel abandonment, which controlled a set of interrelated parameters (soil type, topography, hydrology) that determined species location. Inclusion of a geological perspective for paleoenvironmental reconstruction can increase understanding of plant distribution in Amazonia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epiphytic bromeliads have been used as biomonitors of air pollution since they have specialized structures in leaves for absorbing humidity and nutrients available in the atmosphere. Leaves of five bromeliad species were collected in the conservation unit Parque Estadual Ilha do Cardoso, Sao Paulo State, Brazil, and analyzed by INAA. Vriesea carinata was the species showing most accumulation, with the highest mass fractions of K, Na, Rb and Zn. Similar results were previously found for the same species collected in the dense ombrophilous forest. Chemical composition of bromeliads provided an indication of the atmosphere status in the conservation unit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmental quality assessment studies have been conducted with tree species largely distributed in the Atlantic Forest. Leaf and soil samples were collected in the conservation unit Parque Estadual da Serra do Mar (PESM) nearby the industrial complex of Cubatao, Sao Paulo State, Brazil, and analyzed for chemical elements by instrumental neutron activation analysis. Results were compared to background values obtained in the Parque Estadual Carlos Botelho (PECB). The higher As, Fe, Hg and Zn mass fractions in the tree leaves of PESM indicated anthropogenic influence on this conservation unit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resuspended soil and other airborne particles adhered to the leaf surface affect the chemical composition of the plant. A well-defined cleaning procedure is necessary to avoid this problem, providing a correct assessment of the inherent chemical composition of bromeliads. To evaluate the influence of a washing procedure, INAA was applied for determining chemical elements in the leaves of bromeliads from Vriesea carinata species, both non-washed and washed with Alconox, EDTA and bi-distilled water. Br, Ce, Hg, La, Sc, Se, Sm and Th showed higher mass fractions in non-washed leaves. The washing procedure removed the exogenous material without leaching chemical elements from inside the tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accumulation of chemical elements in biological compartments is one of the strategies of tropical species to adapt to a low-nutrient soil. This study focuses on the Atlantic Forest because of its eco-environmental importance as a natural reservoir of chemical elements. About 20 elements were determined by INAA in leaf, soil, litter and epiphyte compartments. There was no seasonality for chemical element concentrations in leaves, which probably indicated the maintainance of chemical elements in this compartment. Considering the estimated quantities, past deforestation events could have released large amounts of chemical elements to the environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many different species of Bromeliaceae are endangered and their conservation requires specific knowledge of their growth habits and propagation. In vitro culture of bromeliads is an important method for efficient clonal propagation and ill vitro seed g,germination can be used to maintain genetic variability. The present work aims to evaluate the in vitro growth and nutrient concentration in leaves of the epiphyte bromeliads Vriesea friburguensis Mez, Vriesea hieroglyphica (Carriere) E. Morren, and Vriesea unilateralis Mez, which exhibit slow rates of growth in vivo and in vitro. Initially, we compared the endogenous mineral composition of bromeliad plantlets grown in half-strength Murashige and Skoog (MS) medium and the mineral composition considered adequate in the literature. This approach suggested that calcium (Ca) is a critical nutrient and this was considered for new media formulation. Three new culture media were defined in which the main changes to half-strength MS medium were an increase in Ca, magnesium, sulfur, copper, and chloride and a decrease in iron, maintaining the nitrate: ammonium rate at approximate to 2:1. The main difference among the three new media formulated was Ca concentration, which varied from 1.5 mm in half-strength MS to 3.0, 6.0, and 12 mm in M2, M3, and M4 media, respectively. Consistently, all three species exhibited significantly higher fresh and dry weight on M4, the newly defined medium with the highest level of Ca (12 mm). Leaf nitrogen, potassium, zinc, magnesium and boron concentrations increased as Ca concentration in the medium increased from 1.5 to 12 mm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long-term assessments of species assemblages are valuable tools for detecting species ecological preferences and their dispersal tracks, as well as for assessing the possible effects of alien species on native communities. Here we report a 50-year-long study on population dynamics of the four species of land flatworms (Platyhelminthes, Tricladida, Terricola) that have colonized or become extinct in a 70-year-old Atlantic Forest regrowth remnant through the period 1955-2006. On the one hand, the two initially most abundant species, which are native to the study site, Notogynaphallia ernesti and Geoplana multicolor have declined over decades and at present do not exist in the forest remnant. The extinction of these species is most likely related with their preference for open vegetation areas, which presently do not exist in the forest remnant. On the other hand, the neotropical Geoplaninae 1 and the exotic Endeavouria septemlineata were detected in the forest only very recently. The long-term study allowed us to conclude that Geoplaninae 1 was introduced into the study area, although it is only known from the study site. Endeavouria septemlineata, an active predator of the exotic giant African snail, is originally known from Hawaii. This land flatworm species was observed repeatedly in Brazilian anthropogenic areas, and this is the first report of the species in relatively well preserved native forest, which may be evidence of an ongoing adaptive process. Monitoring of its geographic spread and its ecological role would be a good practice for preventing potential damaging effects, since it also feeds on native mollusk fauna, as we observed in lab conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazilian Atlantic Forest is one of the richest biodiversity hotspots of the world. Paleoclimatic models have predicted two large stability regions in its northern and central parts, whereas southern regions might have suffered strong instability during Pleistocene glaciations. Molecular phylogeographic and endemism studies show, nevertheless, contradictory results: although some results validate these predictions, other data suggest that paleoclimatic models fail to predict stable rainforest areas in the south. Most studies, however, have surveyed species with relatively high dispersal rates whereas taxa with lower dispersion capabilities should be better predictors of habitat stability. Here, we have used two land planarian species as model organisms to analyse the patterns and levels of nucleotide diversity on a locality within the Southern Atlantic Forest. We find that both species harbour high levels of genetic variability without exhibiting the molecular footprint of recent colonization or population expansions, suggesting a long-term stability scenario. The results reflect, therefore, that paleoclimatic models may fail to detect refugia in the Southern Atlantic Forest, and that model organisms with low dispersal capability can improve the resolution of these models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, high-aligned single-walled carbon nanotube (SWCNT) forest have been grown using a high-density plasma chemical vapor deposition technique (at room temperature) and patterned into micro-structures by photolithographic techniques, that are commonly used for silicon integrated circuit fabrication. The SWCNTs were obtained using pure methane plasma and iron as precursor material (seed). For the growth carbon SWCNT forest the process pressure was 15 mTorr, the RF power was 250W and the total time of the deposition process was 3 h. The micropatterning processes of the SWCNT forest included conventional photolithography and magnetron sputtering for growing an iron layer (precursor material). In this situation, the iron layer is patterned and high-aligned SWCNTs are grown in the where iron is present, and DLC is formed in the regions where the iron precursor is not present. The results can be proven by Scanning Electronic Microscopy and Raman Spectroscopy. Thus, it is possible to fabricate SWCNT forest-based electronic and optoelectronic devices. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

(Impact of seedling removal on regenerating community structure of a seasonal semideciduous forest). Transplanting seedlings and saplings from natural forests has been considered an alternative to producing saplings of native species for forest restoration purposes, but the possible impact of this procedure on plant community regeneration has not been investigated. This work evaluates the impact of different treatments of shrub and tree-seedling (up to 30 cm) removal from a seasonal semideciduous forest fragment located in southeastern Brazil on the natural regeneration process. Eighty 2x2 m plots were installed in two habitats (forest edge and interior) and submitted to four seedling-removal treatments (I, II - 100% removal with or without soil mixing; III - 50% removal without soil mixing: and IV - control treatment Without seedling removal). Regeneration density and richness were evaluated before treatment as well as 6, 12 and 18 months later. The results were compared among treatments for each evaluation period and among periods within treatments. There were similarities between edge and interior. The natural regeneration process did not improve with soil mixing. Plots submitted to seedling removal partially recovered plant density; however, these plots had lower species richness when compared to the control and to the initial values before treatment. Seedling removal has a negative impact on the regeneration process of low-density species, thus the use of natural regeneration as a sapling source for forest restoration purposes should focus only on high-density species with well-known regeneration strategies and not on the community as a whole.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Riparian forests are protected by Brazilian law to preserve rivers and their margins. A sugar cane field adjacent to a strip of young riparian forest bordering an older riparian forest along a stream was used to study the riparian forest as a buffer zone to prevent pesticides pollution. Concentrations of the herbicides diuron, hexazinone and tebuthiuron were determined in different soil layers of a Red Yellow Oxisol during 2003 and 2004. The determination was done by High Performance Liquid Chromatography with reverse phase C-18 column, through two mobile phases. Diuron and hexazinone concentration diminished between the sugar cane and riparian forest as buffer strip demonstrating a protective effect. However, tebuthiuron had about four times higher concentrations in the old riparian forest compared to the other areas. Concentrations were higher in the surface and decreased in deeper soil layers in the old riparian forest suggesting that this herbicide probably was introduced by air pollution. This pesticide concentrated in the canopy could be washed by rain to the soil adjacent to the stream. Our data suggest that climate conditions were responsible for enhanced volatilization exposing the old riparian forest to more air pollution that was captured by the higher canopy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Edge effects resulting from isolation and subsequent microclimatic changes are one of the most important threats to the forest fragments conservation. The efficiency of maintaining a barrier formed by three rows of Eucalyptus along the edge of a subtropical seasonal semi deciduous forest fragment, surrounded by Eucalyptus monoculture, was evaluated as a way of softening the microclimatic changes (light intensity, temperature and relative humidity) and the impacts of eucalypt mechanized harvesting on the native vegetation along the contact zone between the forest fragment and the plantation. The Eucalyptus barrier was effective in softening the microclimate. Light intensity was 35% lower in the presence of the barrier. The barrier also provided a reduction of 1 C in air temperature and increased in 3.4% in relative humidity throughout the year. The barrier was also effective in preventing the impact on native vegetation, avoiding damage to adult trees and preserving the regenerating forest stratum near the border, which was reduced to less than 20% in density and 50% in richness, with no such barrier. The barrier of Eucalyptus may, therefore, be recommended as an effective method to minimize the impacts of mechanized forest harvesting operations and mitigate the microclimatic conditions along the edge of forest fragments.