55 resultados para Computer Diagnostics
Resumo:
The Birnbaum-Saunders (BS) model is a positively skewed statistical distribution that has received great attention in recent decades. A generalized version of this model was derived based on symmetrical distributions in the real line named the generalized BS (GBS) distribution. The R package named gbs was developed to analyze data from GBS models. This package contains probabilistic and reliability indicators and random number generators from GBS distributions. Parameter estimates for censored and uncensored data can also be obtained by means of likelihood methods from the gbs package. Goodness-of-fit and diagnostic methods were also implemented in this package in order to check the suitability of the GBS models. in this article, the capabilities and features of the gbs package are illustrated by using simulated and real data sets. Shape and reliability analyses for GBS models are presented. A simulation study for evaluating the quality and sensitivity of the estimation method developed in the package is provided and discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We introduce in this paper the class of linear models with first-order autoregressive elliptical errors. The score functions and the Fisher information matrices are derived for the parameters of interest and an iterative process is proposed for the parameter estimation. Some robustness aspects of the maximum likelihood estimates are discussed. The normal curvatures of local influence are also derived for some usual perturbation schemes whereas diagnostic graphics to assess the sensitivity of the maximum likelihood estimates are proposed. The methodology is applied to analyse the daily log excess return on the Microsoft whose empirical distributions appear to have AR(1) and heavy-tailed errors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Influence diagnostics methods are extended in this article to the Grubbs model when the unknown quantity x (latent variable) follows a skew-normal distribution. Diagnostic measures are derived from the case-deletion approach and the local influence approach under several perturbation schemes. The observed information matrix to the postulated model and Delta matrices to the corresponding perturbed models are derived. Results obtained for one real data set are reported, illustrating the usefulness of the proposed methodology.
Resumo:
Birnbaum-Saunders models have largely been applied in material fatigue studies and reliability analyses to relate the total time until failure with some type of cumulative damage. In many problems related to the medical field, such as chronic cardiac diseases and different types of cancer, a cumulative damage caused by several risk factors might cause some degradation that leads to a fatigue process. In these cases, BS models can be suitable for describing the propagation lifetime. However, since the cumulative damage is assumed to be normally distributed in the BS distribution, the parameter estimates from this model can be sensitive to outlying observations. In order to attenuate this influence, we present in this paper BS models, in which a Student-t distribution is assumed to explain the cumulative damage. In particular, we show that the maximum likelihood estimates of the Student-t log-BS models attribute smaller weights to outlying observations, which produce robust parameter estimates. Also, some inferential results are presented. In addition, based on local influence and deviance component and martingale-type residuals, a diagnostics analysis is derived. Finally, a motivating example from the medical field is analyzed using log-BS regression models. Since the parameter estimates appear to be very sensitive to outlying and influential observations, the Student-t log-BS regression model should attenuate such influences. The model checking methodologies developed in this paper are used to compare the fitted models.
Resumo:
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
Resumo:
We introduce, for the first time, a new class of Birnbaum-Saunders nonlinear regression models potentially useful in lifetime data analysis. The class generalizes the regression model described by Rieck and Nedelman [Rieck, J.R., Nedelman, J.R., 1991. A log-linear model for the Birnbaum-Saunders distribution. Technometrics 33, 51-60]. We discuss maximum-likelihood estimation for the parameters of the model, and derive closed-form expressions for the second-order biases of these estimates. Our formulae are easily computed as ordinary linear regressions and are then used to define bias corrected maximum-likelihood estimates. Some simulation results show that the bias correction scheme yields nearly unbiased estimates without increasing the mean squared errors. Two empirical applications are analysed and discussed. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper describes a new module of the expert system SISTEMAT used for the prediction of the skeletons of neolignans by (13)C NMR, (1)H NMR and botanical data obtained from the literature. SISTEMAT is composed of MACRONO, SISCONST, C13MACH, H1MACH and SISOCBOT programs, each analyzing data of the neolignan in question to predict the carbon skeleton of the compound. From these results, the global probability is computed and the most probable skeleton predicted. SISTEMAT predicted the skeletons of 75% of the 20 neolignans tested, in a rapid and simple procedure demonstrating its advantage for the structural elucidation of new compounds.
Resumo:
Lithium salt solutions of Li(CF3SO2)(2)N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)(2)N-, bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.
Resumo:
This paper reports an expert system (SISTEMAT) developed for structural determination of diverse chemical classes of natural products, including lignans, based mainly on 13C NMR and 1H NMR data of these compounds. The system is composed of five programs that analyze specific data of a lignan and shows a skeleton probability for the compound. At the end of analyses, the results are grouped, the global probability is computed, and the most probable skeleton is exhibited to the user. SISTEMAT was able to properly predict the skeletons of 80% of the 30 lignans tested, demonstrating its advantage during the structural elucidation course in a short period of time.
Resumo:
Microfluidic paper-based analytical devices (mu PADs) are a new class of point-of-care diagnostic devices that are inexpensive, easy to use, and designed specifically for use in developing countries. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.)