63 resultados para Blood cells count
Resumo:
Background Autologous non-myeloablative haemopoietic stem cell transplantation is a method to deliver intense immune suppression. We evaluated the safety and clinical outcome of autologous non-myeloablative haemopoietic stem cell transplantation in patients with retapsing-remitting multiple sclerosis (MS) who had not responded to treatment with interferon beta. Methods Eligible patients had relapsing-remitting MS, attended Northwestern Memorial Hospital, and despite treatment with interferon beta had had two corticosteroid-treated relapses within the previous 12 months, or one relapse and gadolinium-enhancing lesions seen on MRI and separate from the relapse. Peripheral blood haemopoietic stem cells were mobilised with 2 g per m(2) cyclophosphamide and 10 mu g per kg per day filgrastim. The conditioning regimen for the haemopoietic stem cells was 200 mg per kg cyclophosphamide and either 20 mg alemtuzumab or 6 mg per kg rabbit antithymocyte globulin. Primary outcomes were progression-free survival and reversal of neurological disability at 3 years post-transplantation. We also sought to investigate the safety and tolerability of autologous non-myeloablative haemopoietic stem cell transplantation. Findings Between January 2003, and February, 2005, 21 patients were treated. Engraftment of white blood cells and platelets was on median day 9 (range day 8-11) and patients were discharged from hospital on mean day 11 (range day 8-13). One patient had diarrhoea due to Clostridium difficile and two patients had dermatomal zoster. Two of the 17 patients receiving alemtuzumab developed late immune thrombocytopenic purpura that remitted with standard therapy. 17 of 21 patients (81%) improved by at least 1 point on the Kurtzke expanded disability status scale (EDSS), and five patients (24%) relapsed but achieved remission after further immunosuppression. After a mean of 37 months (range 24-48 months), all patients were free from progression (no deterioration in EDSS score), and 16 were free of relapses. Significant improvements were noted in neurological disability, as determined by EDSS score (p<0.0001), neurological rating scale score (p=0.0001), paced auditory serial addition test (p=0.014), 25-foot walk (p<0.0001), and quality of life, as measured with the short form-36 (SF-36) questionnaire (p<0.0001). Interpretation Non-myeloablative autologous haemopoietic stem cell transplantation in patients with relapsing-remitting MS reverses neurological deficits, but these results need to be confirmed in a randomised trial.
Resumo:
We report a case of a 47-year-old man diagnosed with chronic lymphocytic leukemia (CLL) with two extra copies of chromosome 8. Classical cytogenetic analysis by the immunostimulatory combination of DSP30 and interleukin 2 showed tetrasomy of chromosome 8 in 60% of the metaphase cells (48,XY,+8,+8[12]/46,XY[8]). Spectral karyotype analysis confirmed the abnormality previously seen by G banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 8 probe performed on peripheral blood cells without any stimulant agent showed tetrasomy of chromosome 8 in 54% of analyzed cells (108 of 200). To our knowledge, tetrasomy 8 as the sole chromosomal abnormality in CLL has not been previously described. The prognostic significance of tetrasomy 8 in CLL remains to be elucidated. However, the patient has been followed up in the outpatient hospital since 2004 without any therapeutic intervention and has so far remained stable. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Leptospirosis is a zoonotic disease of global distribution, which affects both animals and humans. Pathogenic leptospires, the bacteria that cause this disease, require iron for their growth, and these spirochetes probably use their hemolysins, such as the sphingomyelinases, as a way to obtain this important nutrient from host red blood cells during infection. We expressed and purified the leptospiral sphingomyelinases Sph1, Sph2, Sph4, and SphH in a heterologous system. However, the recombinant proteins were not able to lyse sheep erythrocytes, despite having regular secondary structures. Transcripts for all sphingomyelinases tested were detected by RT-PCR analyses, but only Sph2 and SphH native proteins could be detected in Western blot assays using Leptospira whole extracts as well as in renal tubules of infected hamsters. Moreover, antibodies present in the serum of a human patient with laboratory-confirmed leptospirosis recognized Sph2, indicating that this sphingomyelinase is expressed and exposed to the immune system during infection in humans. However, in an animal challenge model, none of the sphingomyelinases tested conferred protection against leptospirosis.
Resumo:
It is well known that hypertension is closely associated to the development of vascular diseases and that the inhibition of nitric oxide biosynthesis by administration of N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) leads to arterial hypertension. In the vascular system, extracellular purines mediate several effects: thus, ADP is the most important platelet agonist and recruiting agent, while adenosine, all end product Of nucleotide metabolism, is a vasodilator and inhibitor of platelet activation and recruitment. Members of several families of enzymes, known as ectonucleotidases, including E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolase), E-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase) and 5`-nucleotidase are able to hydrolyze extracellular nucleotides until their respective nucleosides. We investigated the ectonuclectidase activities of serum and platelets from rats made hypertensive by oral administration of L-NAME (30 mg/kg/day for 14 days or 30 mg/kg/day for 14 days Plus 7 days of L-NAME washout, in the drinking water) in comparison to normotensive control rats. L-NAME promoted a significant rise in systolic blood pressure from 112 +/- 9.8 to 158 +/- 23 mmHg. The left ventricle weight index (LVWI) was increased in rats treated with L-NAME for 14 days when compared to control animals. In Serum samples, ATP, ADP and AMP hydrolysis were reduced by about 27%, 36% and 27%, respectively. In platelets, the decrease in ATP, ADP and AMP hydrolysis Was approximately 27%, 24% and 32%, respectively. All parameters recovered after 7 days of L-NAME washout. HPLC demonstrated a reduction in ADP, AMP and hypoxanthine levels by about 64%, 69% and 87%, respectively. In this study, we showed that ectonucleotidase activities are decreased in serum and platelets from L-NAME-treated rats, which should represent an additional risk for the development of hypertension. The modulation of ectonucleotidase activities may represent an approach to antihypertensive therapy via inhibition of spontaneous platelet activation and recruitment, as well as thrombus formation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Invertebrates protect themselves against microbial infection through cellular and humoral immune defenses. Since the available information on the immune system of spiders is scarce, the main goat of the present study was to investigate the role of hemocytes and antimicrobial peptides (AMPs) in defense against microbes of spider Acanthoscurria gomesiana. We previously described the purification and characterization of two AMPs from the hemocytes of naive spider A. gomesiana, gomesin and acanthoscurrin. Here we show that 57% of the hemocytes store both gomesin and acanthoscurrin, either in the same or in different granules. Progomesin labeling in hemocyte granules indicates that gomesin is addressed to those organelles as a propeptide. In vivo and in vitro experiments showed that lipopolysaccharide (LPS) and yeast caused the hemocytes to migrate. Once they have reached the infection site, hemocytes may secrete coagulation cascade components and AMPs to cell-free hemolymph. Furthermore, our results suggest that phagocytosis is not the major defense mechanism activated after microbial challenge. Therefore, the main reactions involved in the spider immune defense might be coagulation and AMP secretion. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Prostaglandins are known to be produced by macrophages when challenged with Trypanosoma cruzi, the etiological agent of Chagas` disease. It is not known whether these lipid mediators play a role in oxidative stress in host defenses against this important protozoan parasite. In this study, we demonstrated that inducible cyclooxygenase-mediated prostaglandin production is a key chemical mediator in the control of parasite burden and erythrocyte oxidative stress during T. cruzi infection in C57BL/6 and BALB/c mice, prototype hosts for the study of resistance and susceptibility in murine Chagas` disease. The results suggested the existence of at least two mechanisms of oxidative stress, dependent or independent with regard to the nitric oxide and cyclooxygenase pathway, where one or the other is more evident depending on the mouse strain.
Resumo:
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide is used to kill phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91-phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients. This article lists all mutations identified in CYBB in the X-linked form of CGD. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of future disease-causing mutations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
It has been well-documented that leukotrienes (LTs) are released in allergic lung inflammation and that they participate in the physiopathology of asthma. A role for LTs in innate immunity has recently emerged: Cys-LTs were shown to enhance Fc gamma R-mediated phagocytosis by alveolar macrophages (AMs). Thus, using a rat model of asthma, we evaluated Fc gamma R-mediated phagocytosis and killing of Klebsiella pneumoniae by AMs. The effect of treatment with a cys-LT antagonist (montelukast) on macrophage function was also investigated. Male Wistar rats were immunized twice with OVA/alumen intraperitoneally and challenged with OVA aerosol. After 24 h, the animals were killed, and the AMs were obtained by bronchoalveolar lavage. Macrophages were cultured with IgG-opsonized red blood cells (50: 1) or IgG-opsonized K. pneumoniae (30: 1), and phagocytosis or killing was evaluated. Leukotriene C(4) and nitric oxide were quantified by the EIA and Griess methods, respectively. The results showed that AMs from sensitized and challenged rats presented a markedly increased phagocytic capacity via Fc gamma R (10X compared to controls) and enhanced killing of K. pneumoniae (4X higher than controls). The increased phagocytosis was inhibited 15X and killing 3X by treatment of the rats with montelukast, as compared to the non-treated group. cys-LT addition increased phagocytosis in control AMs but had no effect on macrophages from allergic lungs. Montelukast reduced nitric oxide (39%) and LTC(4) (73%). These results suggest that LTs produced during allergic lung inflammation potentiate the capacity of AMs to phagocytose and kill K. pneumonia via Fc gamma R. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Chagas` disease is accompanied by severe anemia and oxidative stress, which may contribute to mortality. In this study, we investigated the role of 5-lipoxygenase (5-LO) in the control of parasitism and anemia associated with oxidative damage of erythrocytes in experimental Trypanosoma cruzi infection. Wild-type C57BL/6, 129Sv mice treated or not with nordihydroguaiaretic acid (NDGA, 5-LO inhibitor), mice lacking the 5-LO enzyme gene (5-LO(-/-)) and inducible nitric oxide synthase gene (iNOS(-/-)) were infected with the Y strain of T cruzi. impairment of 5-LO resulted in increased numbers of trypomastigote forms in the blood and amastigote forms in the heart of infected mice. We assessed oxidative stress in erythrocytes by measuring oxygen uptake, induction time and chemiluminescence following treatment with tert-butyl hydroperoxide (TBH). Our results show that 5-LO metabolites increased lipid peroxidation levels in erythrocytes during the early phase of murine T cruzi infection. NDGA treatment reduced oxidative damage of erythrocytes in C57BL/6 T cruzi-infected mice but not in C57BL/6 iNOS-/- infected mice, showing that the action of NDGA is dependent on endogenous nitric oxide (NO). In addition, our results show that 5-LO metabolites do not participate directly in the development of anemia in infected mice. We conclude that 5-LO products may not only play a major role in controlling heart tissue parasitism, i.e., host resistance to acute infection with T cruzi in vivo, but in the event of an infection also play an important part in erythrocyte oxidative stress, an NO-dependent effect. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Recombinant Bacillus subtilis strains, either spores or vegetative cells, may be employed as safe and low cost orally delivered live vaccine vehicles. In this study, we report the use of an orally delivered B. subtilis vaccine strain to boost systemic and secreted antibody responses in mice i.m. primed with a DNA vaccine encoding the structural subunit (CfaB) of the CFA/I fimbriae encoded by enterotoxigenic Escherichia coli (ETEC), an important etiological agent of diarrhea among travelers and children living in endemic regions. DBA/2 female mice submitted to the prime-boost immunization regimen developed synergic serum (IgG) and mucosal (IgA) antibody responses to the target CfaB antigen. Moreover, in contrast to mice immunized only with one vaccine formulation, sera harvested from prime-boosted vaccinated individuals inhibited adhesion of ETEC cells to human red blood cells. Additionally, vaccinated dams conferred full passive protection to suckling newborn mice challenged with a virulent ETEC strain. Taken together the present results further demonstrate the potential use of recombinant B. subtilis strains as an alternative live vaccine vehicle. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The human malaria parasite Plasmodium vivax is responsible for 25 - 40% of the similar to 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non- human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
Resumo:
Diabetic individuals are more susceptible to infections and this seems to be related to impaired phagocyte function. Alveolar macrophages (AMs) are the first barrier to prevent respiratory infections Leukotrienes (LTs) increase AM phagocytic activity via Fc gamma R. In this study, we compared AMs from diabetic and nondiabetic rats for phagocytosis via Fc gamma R and the roles of LTs and insulin Diabetes was induced in male Wistar rats by alloxan (42 mg/kg, i.v); macrophages were obtained by bronchoalveolar lavage and IgG-opsonised sheep red blood cells (IgG-SRBC) were used as targets. LTs were added to the AMs 5 min before the addition of IgG-SRBC. AMs were treated with a LT synthesis inhibitor (zileuton, 10 mu M), or antagonists of the LTB(4) receptor (CP105 696, 10 mu M) cys-LT receptor (MK571, 10 mu M), 30 or 20 min before the addition of IgG-SRBC, respectively. We found that the phagocytosis of IgG-SRBC by AMs from diabetic rats is impaired compared with non-diabetic rats. Treatment with the LT inhibitor/antagonists significantly reduced AM phagocytosis in non-diabetic but not diabetic rats. During the phagocytosis of IgG-SRBC LTB(4) and LTC(4) were produced by AMs from both groups. The addition of exogenous LTB(4) or LTD(4) potentiated phagocytosis similarly in both groups Phagocytosis was followed by the phosphorylation of PKC-delta. ERK and Akt This was reduced by zileuton treatment in AMs from non-diabetic but not diabetic rats The addition of insulin to AMs further increased the phagocytosis by increasing PKC-delta phosphorylation These results suggest that the impaired phagocytosis found in AMs from diabetic rats is related to a deficient coupling of LTs to the Fc gamma R signaling cascade and that insulin has a key role in this coupling An essential role for insulin in Innate immunity is suggested (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Copper sulfate is widely used in aquaculture. Exposure to this compound can be harmful to fish, resulting in oxidative metabolism alterations and gill tissue damage. Pacu, Piaractus mesopotamicus, (wt = 43.4 +/- A 3.35 g) were distributed in experimental tanks (n = 10; 180 l) and exposed for 48 h to control (without copper addition), 0.4Cu (0.4 mg l(-1)), 0CupH (without copper addition, pH = 5.0) and 0.4CupH (0.4 mg l(-1), pH = 5.0). In liver and red muscle, the superoxide dismutase (SOD) was responsive to the increases in the aquatic copper. The plasmatic intermediary metabolites and hematological variables in the fish of group 0.4Cu were similar to those of the control group. Conversely, the exposure to 0.4CupH caused an increase in the plasmatic lactate, number of red blood cells (RBC) and hemoglobin (Hb). Plasmatic copper concentration [Cu(p)] increased in group 0.4Cu and 0.4CupH, which is higher in group 0.4CupH, suggests an effect of water pH on the absorbed copper. Exposure to 0.4Cu and 0.4CupH resulted in a reduction in the Na(+)/K(+)-ATPase activity and an increase in metallothionein (MT) in the gills. Exposure to 0CupH caused a decrease in glucose and pyruvate concentrations and an increase in RBC, Hb, and the branchial Na(+)/K(+)-ATPase activity. These responses suggest that the fish triggered mechanisms to revert the blood acidosis, save energy and increase the oxygen uptake. MT was an effective biomarker, responding to copper in different pHs and dissolved oxygen. Combined-factors caused more significant disturbance in the biomarkers than single-factors.
Resumo:
Photodynamic therapy, used mainly for cancer treatment and microorganisms inaction, is based on production of reactive oxygen species by light irradiation of a sensitizer. Hematoporphyrin derivatives as Photofrin (R) (PF) Photogem (R) (PG) and Photosan (R) (PF), and chlorin-c6-derivatives as Photodithazine (R)(PZ), have suitable sensitizing properties. The present study provides a way to make a fast previous evaluation of photosensitizers efficacy by a combination of techniques: a) use of brovine serum albumin and uric acid as chemical dosimeters; b) photo-hemolysis of red blood cells used as a cell membrane interaction model, and c) octanol/phosphate buffer partition to assess the relative lipophilicity of the compounds. The results suggest the photodynamic efficient rankings PZ > PG >= PF > PS. These results agree with the cytotoxicity of the photosensitizers as well as to chromatographic separation of the HpDs, both performed in our group, showing that the more lipophilic is the dye, the more acute is the damage to the RBC membrane and the oxidation of indol, which is immersed in the hydrophobic region of albumin.
Resumo:
Statins have pleiotropic effects, including endothelial nitric oxide synthase (eNOS) upregulation and increased nitric oxide formation, which can be modulated by a genetic polymorphism in the promoter region of the eNOS gene (T-786C). Here, we report our investigation of whether this polymorphism modulates the effects of atorvastatin on the fluidity of erythrocyte membranes. We genotyped 200 healthy subjects (males, 18-60 years of age) and then randomly selected 15 of these with the TT genotype and 15 with the CC genotype to receive placebo or atorvastatin (10 mg/day oral administration) for 14 days. Cell membrane fluidity was evaluated by electron paramagnetic resonance (EPR) and spin-labeling method. The EPR spectra were registered on a VARIAN-E4 spectrometer. Thiobarbituric acid-reactive species (TBA-RS) and plasma membrane cholesterol were determined in the erythrocytes. Atorvastatin reduced membrane fluidity in CC subjects (P < 0.05) but not in those with the TT genotype (P > 0.05). While no significant differences were found in plasma membrane cholesterol concentrations, higher TBA-RS concentrations were found in the CC subjects than in the TT subjects (P < 0.05). These findings suggest that a short treatment with atorvastatin is disadvantageous to subjects with the CC genotype for the T-786C polymorphism compared to those with TT genotype, at least in terms of the hemorheological properties of erythrocytes.