117 resultados para Aggregate disruption
Resumo:
Background: Leptin-deficient mice (Lep(ob)/Lep(ob), also known as ob/ob) are of great importance for studies of obesity, diabetes and other correlated pathologies. Thus, generation of animals carrying the Lep(ob) gene mutation as well as additional genomic modifications has been used to associate genes with metabolic diseases. However, the infertility of Lep(ob)/Lep(ob) mice impairs this kind of breeding experiment. Objective: To propose a new method for production of Lep(ob)/Lep(ob) animals and Lep(ob)/Lep(ob)-derived animal models by restoring the fertility of Lep(ob)/Lep(ob) mice in a stable way through white adipose tissue transplantations. Methods: For this purpose, 1 g of peri-gonadal adipose tissue from lean donors was used in subcutaneous transplantations of Lep(ob)/Lep(ob) animals and a crossing strategy was established to generate Lep(ob)/Lep(ob)-derived mice. Results: The presented method reduced by four times the number of animals used to generate double transgenic models (from about 20 to 5 animals per double mutant produced) and minimized the number of genotyping steps (from 3 to 1 genotyping step, reducing the number of Lep gene genotyping assays from 83 to 6). Conclusion: The application of the adipose transplantation technique drastically improves both the production of Lep(ob)/Lep(ob) animals and the generation of Lep(ob)/Lep(ob)-derived animal models. International Journal of Obesity (2009) 33, 938-944; doi: 10.1038/ijo.2009.95; published online 16 June 2009
Resumo:
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Refractory castables are composed of fractions of fine to fairly coarse particles. The fine fraction is constituted primarily of raw materials and calcium aluminate cement, which becomes hydrated, forming chemical bonds that stiffen the concrete during the curing process. The present study focused on an evaluation of several characteristics of two refractory castables with similar chemical compositions but containing aggregates of different sizes. The features evaluated were the maximum load, the fracture energy, and the ""relative crack-propagation work"" of the two castables heat-treated at 110, 650, 1100 and 1550 degrees C. The results enabled us to draw the following conclusions: the heat treatment temperature exerts a significant influence on the matrix/aggregate interaction, different microstructures form in the castables with temperature, and a relationship was noted between the maximum load and the fracture energy. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
There are about 7500 water treatment plants in Brazil. The wastes these plants generate in their decantation tanks and filters are discharged directly into the same brooks and rivers that supply water for treatment. Another serious environmental problem is the unregulated disposal of construction and demolition rubble, which increases the expenditure of public resources by degrading the urban environment and contributing to aggravate flooding and the proliferation of vectors harmful to public health. In this study, an evaluation was made of the possibility of recycling water treatment sludge in construction and demolition waste recycling plants. The axial compressive strength and water absorption of concretes and mortars produced with the exclusive and joint addition of these two types of waste was also determined. The ecoefficiency of this recycling was evaluated by determining the concentration of aluminum in the leached extract resulting from the solubilization of the recycled products. The production of concretes and mortars with the joint addition of water treatment sludge and recycled concrete rubble aggregates proved to be a viable recycling alternative from the standpoint of axial compression strength, modulus of elasticity, water absorption and tensile strength by the Brazilian test method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this study was to evaluate the potential application of a lightweight concrete produced with lightweight coarse aggregate made of the water treatment sludge and sawdust (lightweight composite), by determining the thermal properties and possible environmental impact of future residue of this concrete. Two types of concrete were prepared: concrete produced with the lightweight composite dosed with cement/sand/composite/water in a mass ratio of 1:2.5:0.67:0.6 and conventional concrete dosed with cement/sand/crushed stone/water in a mass ratio of 1:4.8:5.8:0.8. The thermal properties were determined by the hot wire parallel technique. The possible environmental impact was measured using the procedures and guidelines of the Brazilian Association of Technical Standards - ABNT. The concrete produced with the lightweight composite presented a 23% lower thermal conductivity than the conventional concrete. The concrete produced with the lightweight composite presented a set of thermal properties suitable for the application of this concrete in non-structural sealing elements. The concentration of aluminum in the solubilized extract of the concrete produced with the lightweight composite was much lower than the concentration of aluminum in the water treatment sludge, confirming the possible reduction of environmental impact of this composite for use in concrete. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Product lifecycle management (PLM) innovates as it defines both the product as a central element to aggregate enterprise information and the lifecycle as a new time dimension for information integration and analysis. Because of its potential benefits to shorten innovation lead-times and to reduce costs, PLM has attracted a lot of attention at industry and at research. However, the current PLM implementation stage at most organisations still does not apply the lifecycle management concepts thoroughly. In order to close the existing realisation gap, this article presents a process oriented framework to support effective PLM implementation. The framework central point consists of a set of lifecycle oriented business process reference models which links the necessary fundamental concepts, enterprise knowledge and software solutions to effectively deploy PLM. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents a statistical study on the variability of the mechanical properties of hardened self-compacting concrete, including the compressive strength, splitting tensile strength and modulus of elasticity. The comparison of the experimental results with those derived from several codes and recommendations allows evaluating if the hardened behaviour of self-compacting concrete can be appropriately predicted by the existing formulations. The variables analyzed include the maximum size aggregate, paste and gravel content. Results from the analyzed self-compacting concretes presented variability measures in the same range than the expected for conventional vibrated concrete, with all the results within a confidence level of 95%. From several formulations for conventional concrete considered in this study, it was observed that a safe estimation of the modulus of elasticity can be obtained from the value of compressive strength; with lower strength self-compacting concretes presenting higher safety margins. However, most codes overestimate the material tensile strength. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A nonlinear finite element model was developed to simulate the nonlinear response of three-leaf masonry specimens, which were subjected to laboratory tests with the aim of investigating the mechanical behaviour of multiple-leaf stone masonry walls up to failure. The specimens consisted of two external leaves made of stone bricks and mortar joints, and an internal leaf in mortar and stone aggregate. Different loading conditions, typologies of the collar joints, and stone types were taken into account. The constitutive law implemented in the model is characterized by a damage tensor, which allows the damage-induced anisotropy accompanying the cracking process to be described. To follow the post-peak behaviour of the specimens with sufficient accuracy it was necessary to make the damage model non-local, to avoid mesh-dependency effects related to the strain-softening behaviour of the material. Comparisons between the predicted and measured failure loads are quite satisfactory in most of the studied cases. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A weathering classification for granitic rock materials from southeastern Brazil was framed based on core characteristics. The classification was substantiated by a detailed petrographic study. Indirect assessment of weathering grades by density, ultrasonic and Schmidt hammer index tests was performed. Rebound values due to Schmidt hammer multiple impacts at one representative point were more efficient in predicting weathering grades than averaged single impact rebound values, P-wave velocities and densities. Uniaxial compression tests revealed that a large range of uniaxial compressive strength (214-153 MPa) exists in Grade I category where weathering does not seem to have played any role. It was concluded that variability in occurrences of quartz intragranular cracks and in biotite percentage, distribution and orientation might have played a key role in accelerating or decelerating the failure processes of the Grade I specimens. Deterioration of uniaxial compressive strength and elastic modulus and increase in Poisson`s ratio with increasing weathering intensity could be attributed to alteration of minerals, disruption of rock skeleton and microcrack augmentation. A crude relation between failure modes and weathering grades also emerged.
Resumo:
This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.
Resumo:
The processes that govern the rate of particle recovery in a flotation cell include the following sub-processes: collision, attachment, and stability of the aggregate formed by particles and bubbles. Collision is controlled by bulk hydrodynamics inside the flotation cell, while attachment is largely dominated by variables that belong to the domain of surface chemistry (contact angle, induction time). As for the stability of the particle/bubble aggregate, its efficiency depends on both hydrodynamics plus surface chemistry variables of the system. The flotation recovery of coarse particles of apatite and glass spheres was measured by micro-flotation and batch flotation tests in which hydrodynamic parameters were evaluated, such as impeller rotational speed, diameter, and geometry, as well as particle size and density. Results revealed that a proper impeller rotational speed yielded turbulence levels, which enabled to keep particles fully suspended, this way optimizing the collision efficiency between particles and bubbles, without jeopardizing the stability of the particle-bubble aggregates.
Resumo:
The wide production of construction and demolition waste and its illegal deposition are serious current problems in Brazil. This research proposes to evaluate the feasibility of using aggregate from recycled construction and demolition waste (RCDW) in pavement applications. A laboratory program was conducted by geotechnical characterization, bearing capacity and repeated load triaxial tests. The results show that the composition and the compactive effort influence on the physical characteristics of the RCDW aggregate. The compaction process has promoted a partial crushing and breakage of RCDW particles, changing the grain-size distribution and increasing the percentage of cubic grains. This physical change contributes to a better densification of the RCDW aggregate and consequently an improvement in bearing capacity, resilient modulus and resistance to permanent deformation. The results have shown that the RCDW aggregate may be utilized as coarse base and sub-base layer for low-volume roads. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with a procedure for model re-identification of a process in closed loop with ail already existing commercial MPC. The controller considered here has a two-layer structure where the upper layer performs a target calculation based on a simplified steady-state optimization of the process. Here, it is proposed a methodology where a test signal is introduced in a tuning parameter of the target calculation layer. When the outputs are controlled by zones instead of at fixed set points, the approach allows the continuous operation of the process without an excessive disruption of the operating objectives as process constraints and product specifications remain satisfied during the identification test. The application of the method is illustrated through the simulation of two processes of the oil refining industry. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study presents a methodology for the characterization of construction and demolition (C&D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TCA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&D samples taken from the Sao Paulo region in Brazil are discussed. Chemical compositions of mixed C&D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&D into red or grey and geographical origin. The amount of measured soluble salts in C&D aggregates (0.15-25.4 mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&D powders (< 0.15 min). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO(2), the powders have potential use as raw materials for the cement industry. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Riparian forests are protected by Brazilian law to preserve rivers and their margins. A sugar cane field adjacent to a strip of young riparian forest bordering an older riparian forest along a stream was used to study the riparian forest as a buffer zone to prevent pesticides pollution. Concentrations of the herbicides diuron, hexazinone and tebuthiuron were determined in different soil layers of a Red Yellow Oxisol during 2003 and 2004. The determination was done by High Performance Liquid Chromatography with reverse phase C-18 column, through two mobile phases. Diuron and hexazinone concentration diminished between the sugar cane and riparian forest as buffer strip demonstrating a protective effect. However, tebuthiuron had about four times higher concentrations in the old riparian forest compared to the other areas. Concentrations were higher in the surface and decreased in deeper soil layers in the old riparian forest suggesting that this herbicide probably was introduced by air pollution. This pesticide concentrated in the canopy could be washed by rain to the soil adjacent to the stream. Our data suggest that climate conditions were responsible for enhanced volatilization exposing the old riparian forest to more air pollution that was captured by the higher canopy. (C) 2010 Elsevier B.V. All rights reserved.