201 resultados para AMBIENT MASS-SPECTROMETRY
Resumo:
This paper describes methods for the direct determination of Cd and Pb in hair segments (c.a. 5 mm similar to 80 mu g) by solid sampling graphite furnace atomic absorption spectrometry, becoming possible longitudinal profiles in a single strand of hair. To distinguish endogenous and exogenous content. strands of hair were washed by using two different procedures: IAEA protocol (acetone + water + acetone) and the combination of IAEA protocol with HCl washing (acetone + water + acetone + 0.1 mol l(-1) HCl). The concentration of Cd and Pb increased from the root Until the tip of hair washed according to IAEA protocol. However, when the strand of hair was washed using the combination of IAEA protocol and 0.1 mol l(-1) HCl, Cd concentrations decreased in all segments, and Pb concentrations decreased drastically near to the root (5 to 12 mm) and was systematically higher ill the end. The proposed method showed to be useful to assess the temporal variation to Cd and Pb exposure and call be Used for toxicological and environmental investigations. The limits of detection were 2.8 ng g(-1) for Cd and 40 ng g(-1) for Pb. The characteristic masses based oil integrated absorbance were 2.4 pg for Cd and 22 pg for Pb.
Resumo:
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of Sao Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time. integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to Visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simple and reliable method for Hg determination in fish samples has been developed. Lyophilised fish tissue samples were extracted in a 25% (w/v) tetramethylammonium hydroxide (TMAH) solution; the extracts were then analysed by FI-CVAFS. This method can be used to determine total and inorganic Hg, using the same FI manifold. For total Hg determination, a 0.1% (w/v) KMnO(4) solution was added to the FI manifold at the sample zone, followed by the addition of a 0.5% (w/v) SnCl(2) solution, whereas inorganic Hg was determined by adding a 0.1% (w/v) L-cysteine solution followed by a 1.0% (w/v) SnCl(2) solution to the FI system. The organic fraction was determined as the difference between total and inorganic Hg. Sample preparation, reagent consumption and parameters that can influence the FI-CVAFS performance were also evaluated. The limit of detection for this method is 3.7 ng g(-1) for total Hg and 4.3 ng g(-1) for inorganic Hg. The relative standard deviation for a 1.0 mu gL(-1) CH(3)Hg standard solution (n = 20) was 1.1%, and 1.3% for a 1.0 mu gL(-1) Hg(2+) standard solution (n = 20). Accuracy was assessed by the analysis of Certified Reference Material (dogfish: DORM-2, NRCC). Recoveries of 99.1% for total Hg and 93.9% inorganic Hg were obtained. Mercury losses were not observed when sample solutions were re-analysed after a seven day period of storage at 4 degrees C.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
A method for the determination of artemether (ART) and its main metabolite dihydroartemisinin (DHA) in plasma employing liquid-phase microextraction (LPME) for sample preparation prior to liquid chromatography-tandem mass spectrometry (LC-MS-MS) was developed. The analytes were extracted from 1 nil, of plasma utilizing a two-phase LPME procedure with artemisinin as internal standard. Using the optimized LPME conditions, mean absolute recovery rates of 25 and 32% for DHA and ART, respectively, were achieved using toluene-n-octanol (1:1, viv) as organic phase with an extraction time of 30 min. After extraction, the analytes were resolved within 5 min using a mobile phase consisting of methanol-ammonium acetate (10 mmol L(-1) pH 5.0, 80:20. v/v) on a laboratory-made column based on poly(methyltetradecylsiloxane) attached to a zirconized-silica support. MS-MS detection was employed using an electrospray interface in the positive ion mode. The method developed was linear over the range of 5-1000 ng mL(-1) for both analytes. Precision and accuracy were within acceptable levels of confidence (<15%). The assay was applied to the determination of these analytes in plasma from rats treated with ART. The two-phase LPME procedure is affordable and the solvent consumption was very low compared to the traditional methods of sample preparation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A graphite furnace atomic absorption spectrometric method is proposed for the direct and simultaneous determination of Cd, Cu, and Se in human blood. Samples were diluted 1:10 (v/v) in 0.5% (v/v) HNO(3) + 0.5% (v/v) Triton X-100 solution. For 12 mu L injected sample volume + 5 mu L, of 1000 mg L(-1) Pd(NO(3))(2) + 3 mu L of 1000 mg L(-1) Mg(NO(3))(2), the calculated characteristic masses (mo) were 0.9 pg Cd, 16 pg Cu, and 39 pg Se, which are close to those mo values for single-element conditions for THGA furnace (1.3 pg Cd, 17 pg Cu, and 45 pg Se). Calibration curves with linear correlations better than 0.999 were obtained. The limits of detection (LOD) were 0.03 mu g L(-1) Cd, 0.075 mu g L(-1) Cu and 0.3 mu g L(-1) Se, and the relative standard deviations (n= 12) were 2.5%, 0.3%, and 1.5%, respectively. The method was applied for Cd, Cu, and Se determination in 10 human blood samples and the results were in agreement at the 95% confidence level with those obtained by inductively coupled plasma mass spectrometry. Concentrations of analytes in the selected blood samples varied from 1.7 to 3.2 mu g L(-1) Cd, 700 to 921.7 mu g L(-1) Cu, and from 68.6 to 350 mu g L(-1) Se. The accuracy of the proposed method was also evaluated by an addition-recovery experiment and recoveries of Cd, Cu, and Se added to blood samples ranged from 99-109%, 91-103%,and 93-103%, respectively.
Resumo:
In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM(2.5) and PM(10)) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM(2.5) and PM(10) fractions were collected using a dichotomous sampler (10 L min(-1), 24 h) with Teflon (TM) filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM(2.5) in 2009) was 0.99 ng m(-3) (NHV) and 3.3 ng m(-3) (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m(-3) and 0.12 ng m(-3) for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaP(eq)), where the overall toxicity of a PAR mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaP(eq) median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m(-3) and 1.2-1.4 ng m(-3) for the NHV and HV seasons, respectively. Considering that the maximum permissible BaPeq in ambient air is 1 ng m(-3), related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used is cause for concern. (C) 2010 Published by Elsevier Ltd.
Resumo:
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Cosmomycin D (CosD) is an anthracycline that has two trisaccharide chains linked to its ring system. Gel electrophoresis showed that CosD formed stable complexes with plasmid DNA under conditions where daunorubicin (Dn) and doxorubicin (Dx) dissociated to some extent during the experiments. The footprint and stability of CosD complexed with 10- and 16 trier DNA was investigated using several applications of electrospray ionisation mass spectrometry (ESI-MS). ESI-MS binding profiles showed that fewer CosD molecules bound to the sequences than Dn or Dx. In agreement with this, ESI-MS analysis of nuclease digestion products of the complexes showed that CosD protected the DNA to a greater extent than Dn or Dx. In tandem MS experiments, all CosD-DNA complexes were more stable than Dn- and Dx-DNA complexes. These results Support that CosD binds more tightly to DNA and exerts a larger footprint than ESI-MS investigations of the binding properties of CosD Could be carried out rapidly and using only small amounts of sample. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m(-2) s(-1) due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.
Resumo:
This paper reports a method for the direct and simultaneous determination of Cr and Mn in alumina by slurry sampling graphite furnace atomic absorption spectrometry (SiS-SIMAAS) using niobium carbide (NbC) as a graphite platform modifier and sodium fluoride (NaF) as a matrix modifier. 350 mu g of Nb were thermally deposited on the platform surface allowing the formation of NbC (mp 3500 degrees C) to minimize the reaction between aluminium and carbon of the pyrolytic platform, improving the graphite tube lifetime up to 150 heating cycles. A solution of 0.2 mol L(-1) NaF was used as matrix modifier for alumina dissolution as cryolite-based melt, allowing volatilization during pyrolysis step. Masses (c.a. 50 mg) of sample were suspended in 30 ml of 2.0% (v/v) of HNO(3). Slurry was manually homogenized before sampling. Aliquots of 20 mu l of analytical solutions and slurry samples were co-injected into the graphite tube with 20 mu l of the matrix modifier. In the best conditions of the heating program, pyrolysis and atomization temperatures were 1300 degrees C and 2400 degrees C, respectively. A step of 1000 degrees C was optimized allowing the alumina dissolution to form cryolite. The accuracy of the proposed method has been evaluated by the analysis of standard reference materials. The found concentrations presented no statistical differences compared to the certified values at 95% of the confidence level. Limits of detection were 66 ng g(-1) for Cr and 102 ng g(-1) for Mn and the characteristic masses were 10 and 13 pg for Cr and Mn, respectively.
Can mass dissociation patterns of transition-metal complexes be predicted from electrochemical data?
Resumo:
The Cooks kinetic method has been very convenient to correlate the relative dissociation rates obtained by collision-induced fragmentation experiments with the energies of two related bonds in molecules and complexes in the gas phase. Reliable bond energy data are, however, not always available, particularly for polynuclear transition-metal complexes, such as the triruthenium acetate clusters of the general formula [Ru(3) (mu(3)-O)(mu-CH(3)COO)(6)(py)(2)(L)](+), where L = ring substituted N-heterocyclic ligands. Accordingly, their gas-phase collision-induced tandem mass spectrometry (CID MS/MS) dissociation patterns have been analyzed pursuing a relationship with the more easily accessible redox potentials (E(1/2)) and Lever`s E(L) parameters. In fact, excellent linear correlations of In(1/2A(L)/A(py)), where A(py) and A(L) are the abundance of the fragments retaining the pyridine (py) and L ligand, respectively, with E(1/2) and E(L) were found. This result shows that those electrochemical parameters are correlated with bond energies and can be used in the analysis of the dissociation data. Such modified Cooks method can be used, for example, to determine the electronic effects of substituents on the metal-ligand bonds for a series of transition-metal complexes. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by Subunits containing heme groups with molecular masses (M) in the range of 15 to 19 kDa, monomers of 16 kDa (d), and trimers of 51 to 52 kDa (abc) linked by nonheme structures named linkers of 24 to 32 kDa (L). HbGp is homologous to Lumbricus terrestris hemoglobin (HbLt). Several reports propose M of HbLt in the range of 3.6 to 4.4 MDa. Based on subunits M determined by mass spectrometry and assuming HbGp stoichiometry of 12(abcd)(3)L(3) (Vinogradov model) plus 144 heme groups, a Value of M for HbGp oligomer of 3560 kDa can be predicted. This Value is nearly 500 kDa higher than the unique HbGp M Value reported in the literature. In the current work, sedimentation velocity analytical ultracentrifugation (AUC) experiments were performed to obtain M for HbGp in oxy and cyano-met forms. s(20,w)(0), values of 58.1 +/- 0.2 S and 59.6 +/- 0.2 S, respectively, for the two oxidation forms were obtained. The ratio between sedimentation and diffusion coefficients supplied values for M of approximately 3600 100 and 3700 100 kDa for oxy and cyano-met HbGp forms, respectively. An independent determination of the partial specific volume, V(bar), for HbGp was performed based on density measurements, providing a value of 0.764 +/- 0.008, in excellent agreement with the estimates from SEDFIT software. Our results show total consistency between M obtained by AUC and recent partial characterization by mass spectrometry. Therefore, HbGp possesses M very close to that of HbLt, suggesting an oligomeric assembly in agreement with the Vinogradov model. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: Removable partial dentures (RPD) require different hygiene care, and association of brushing and chemical cleansing is the most recommended to control biofilm formation. However, the effect of cleansers has not been evaluated in RPD metallic components. The aim of this study was to evaluate in vitro the effect of different denture cleansers on the weight and ion release of RPD. MATERIAL AND METHODS: Five specimens (12x3 mm metallic disc positioned in a 38x18x4 mm mould filled with resin), 7 cleanser agents [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) (control)] and 2 cobalt-chromium alloys [DeguDent (DD), and VeraPDI (VPDI)] were used for each experimental situation. One hundred and eighty immersions were performed and the weight was analyzed with a high precision analytic balance. Data were recorded before and after the immersions. The ion release was analyzed using mass spectrometry with inductively coupled plasma. Data were analyzed by two-way ANOVA and Tukey HSD post hoc test at 5% significance level. RESULTS: Statistical analysis showed that CT and MI had higher values of weight loss with higher change in VPDI alloy compared to DD. The solutions that caused more ion release were NaOCl and MI. CONCLUSIONS: It may be concluded that 0.05% NaOCl and Medical Interporous tablets are not suitable as auxiliary chemical solutions for RPD care.