156 resultados para 110902 Cellular Nervous System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 (Ink4c) , a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given that (1) the renin-angiotensin system (RAS) is compartmentalized within the central nervous system in neurons and glia (2) the major source of brain angiotensinogen is the glial cells, (3) the importance of RAS in the central control of blood pressure, and (4) nicotine increases the probability of development of hypertension associated to genetic predisposition; the objective of the present study was to evaluate the effects of nicotine on the RAS in cultured glial cells from the brainstem and hypothalamus of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Ligand binding, real-time PCR and western blotting assays were used to compare the expression of angiotensinogen, angiotensin converting enzyme, angiotensin converting enzyme 2 and angiotensin II type1 receptors. We demonstrate, for the first time, that there are significant differences in the basal levels of RAS components between WKY and SHR rats in glia from 1-day-old rats. We also observed that nicotine is able to modulate the renin-angiotensin system in glial cells from the brainstem and hypothalamus and that the SHR responses were more pronounced than WKY ones. The present data suggest that nicotine effects on the RAS might collaborate to the development of neurogenic hypertension in SHR through modulation of glial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adult mammalian brain contains self-renewable, multipotent neural stem cells (NSCs) that are responsible for neurogenesis and plasticity in specific regions of the adult brain. Extracellular matrix, vasculature, glial cells, and other neurons are components of the niche where NSCs are located. This surrounding environment is the source of extrinsic signals that instruct NSCs to either self-renew or differentiate. Additionally, factors such as the intracellular epigenetics state and retrotransposition events can influence the decision of NSC`s fate into neurons or glia. Extrinsic and intrinsic factors form an intricate signaling network, which is not completely understood. These factors altogether reflect a few of the key players characterized so far in the new field of NSC research and are covered in this review. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 107-114 DOI:10.1002/wsbm:100

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central actions of leptin are essential for homeostatic control of adipose tissue mass, glucose metabolism, and many autonomic and neuroendocrine systems. In the brain, leptin acts on numerous different cell types via the long-form leptin receptor (LepRb) to elicit its effects. The precise identification of leptin`s cellular targets is fundamental to understanding the mechanism of its pleiotropic central actions. We have systematically characterized LepRb distribution in the mouse brain using in situ hybridization in wildtype mice as well as by EYFP immunoreactivity in a novel LepRb-IRES-Cre EYFP reporter mouse line showing high levels of LepRb mRNA/EYFP coexpression. We found substantial LepRb mRNA and EYFP expression in hypothalamic and extrahypothalamic sites described before, including the dorsomedial nucleus of the hypothalamus, ventral premammillary nucleus, ventral tegmental area, parabrachial nucleus, and the dorsal vagal complex. Expression in insular cortex, lateral septal nucleus, medial preoptic area, rostral linear nucleus, and in the Edinger-Westphal nucleus was also observed and had been previously unreported. The LepRb-IRES-Cre reporter line was used to chemically characterize a population of leptin receptor-expressing neurons in the midbrain. Tyrosine hydroxylase and Cre reporter were found to be coexpressed in the ventral tegmental area and in other midbrain dopaminergic neurons. Lastly, the LepRbI-RES-Cre reporter line was used to map the extent of peripheral leptin sensing by central nervous system (CNS) LepRb neurons. Thus, we provide data supporting the use of the LepRb-IRES-Cre line for the assessment of the anatomic and functional characteristics of neurons expressing leptin receptor. J. Comp. Neurol. 514:518-532, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calomys callosus is a wild, native forest rodent found in South America. In Brazil, this species has been reported to harbour the parasitic protozoan Trypanosoma cruzi. The ganglionated plexus of this species was studied using whole-mount preparations of trachea that were stained using histological and histochemical methods. The histological methods were used to determine the position of the ganglia with respect to the trachea muscle and to determine the presence of elastic and collagen fibers. The histochemical method of NADH-diaphorase was used for morphometric evaluations of the plexus. The tracheal plexus lies exclusively over the muscular part of the organ, dorsal to the muscle itself. It varies in pattern and extent between animals. The average number of neurons was 279 and the cellular profile area ranged from 38.37 mu m(2) to 805.89 mu m(2). Acetylcholinesterase (AChE) histochemistry verified that both ganglia and single neurons lie along nerve trunks and are reciprocally interconnected with the plexus. Intensely AChE-reactive neurons were found to be intermingled with poorly reactive ones. Two longitudinal AChE-positive nerve trunks were also observed and there was a diverse number of ganglia along the intricate network of nerves interconnecting the trunks. A ganglion capsule of collagen and elastic fibers surrounding the neurons was observed. Under polarized light, the capsule appeared to be formed by Type I collagen fibers. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synaptic modulation by activity-dependent changes constitutes a cellular mechanism for neuronal plasticity. However, it is not clear how the complete lack of neuronal signaling specifically affects elements involved in the communication between neurons. In the retina, it is now well established that both chemical and electrical synapses are essential to mediate the transmission of visual signaling triggered by the photoreceptors. In this study, we compared the expression of synaptic proteins in the retinas of wild-type (WT) vs. rd/rd mice, an animal model that displays inherited and specific ablation of photoreceptors caused by a mutation in the gene encoding the beta-subunit of rod cGMP-phosphodiesterase (Pde6b(rd1)). We specifically examined the expression of connexins (Cx), the proteins that form the gap junction channels of electrical synapses, in addition to synaptophysin and synapsin 1, which are involved in the release of neurotransmitters at chemical synapses. Our results revealed that Cx36 gene expression levels are lower in the retinas of rd/rd when compared with WT. Confocal analysis indicated that Cx36 immunolabeling almost disappeared in the outer plexiform layer without significant changes in protein distribution within the inner plexiform layer of rd/rd retinas. Likewise, synaptophysin expression remarkably decreased in the outer plexiform layer of rd/rd retinas, and this down-regulation was also associated with diminished transcript levels. Furthermore, we observed down-regulation of Cx57 gene expression in rd/rd retinas when compared with WT and also changes in protein distribution. Interestingly, Cx45 and synapsin I expression in rd/rd retinas showed no noticeable changes when compared with WT. Taken together, our results revealed that the loss of photoreceptors leads to decreased expression of some synaptic proteins. More importantly, this study provides evidence that neuronal activity regulates, but is not essential to maintain, the expression of synaptic elements. (c) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion protein (PrPC), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C)-STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C), with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development. STEM CELLS 2011;29:1126-1136

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prion protein (PrP(C)) is highly expressed in the nervous system, and its abnormal conformer is associated with prion diseases. PrP(C) is anchored to cell membranes by glycosylphosphatidylinositol, and transmembrane proteins are likely required for PrP(C)-mediated intracellular signaling. Binding of laminin (Ln) to PrP(C) modulates neuronal plasticity and memory. We addressed signaling pathways triggered by PrP(C)-Ln interaction in order to identify transmembrane proteins involved in the transduction of PrP(C)-Ln signals. The Ln gamma 1-chain peptide, which contains the Ln binding site for PrP(C), induced neuritogenesis through activation of phospholipase C (PLC), Ca(2+) mobilization from intracellular stores, and protein kinase C and extracellular signal-regulated kinase (ERK1/2) activation in primary cultures of neurons from wild-type, but not PrP(C)-null mice. Phage display, coimmunoprecipitation, and colocalization experiments showed that group I metabotropic glutamate receptors (mGluR1/5) associate with PrP(C). Expression of either mGluR1 or mGluR5 in HEK293 cells reconstituted the signaling pathways mediated by PrP(C)-Ln gamma 1 peptide interaction. Specific inhibitors of these receptors impaired PrP(C)-Ln gamma 1 peptide-induced signaling and neuritogenesis. These data show that group I mGluRs are involved in the transduction of cellular signals triggered by PrP(C)-Ln, and they support the notion that PrP(C) participates in the assembly of multiprotein complexes with physiological functions on neurons.-Beraldo, F. H., Arantes, C. P., Santos, T. G., Machado, C. F., Roffe, M., Hajj, G. N., Lee, K. S., Magalhaes, A. C., Caetano, F. A., Mancini, G. L., Lopes, M. H., Americo, T. A., Magdesian, M. H., Ferguson, S. S. G., Linden, R., Prado, M. A. M., Martins, V. R. Metabotropic glutamate receptors trans-duce signals for neurite outgrowth after binding of the prion protein to laminin gamma 1 chain. FASEB J. 25, 265-279 (2011). www.fasebj.org

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A medula espinhal dos mamíferos adultos não permite a regeneração de axônios. Por razões ainda desconhecidas, as fibras neurais falham em cruzar o sítio da lesão, como se não houvesse crescimento, desde a primeira tentativa. Quais mecanismos poderiam explicar a perda da capacidade de regeneração? As cicatrizes formadas pelas células da glia seriam uma consequência da falha na regeneração ou a causa? Diversas linhas de evidência sugerem que a regeneração da medula espinhal seria impedida no sistema nervoso central pela ação de fatores locais no sítio da lesão, e que o sistema nervoso central não-lesado é um meio permissivo para o crescimento axonal, na direção de alvos específicos. Uma vez que os axônios são induzidos adequadamente a cruzar a lesão com o auxílio de implantes, fármacos ou células indiferenciadas, as fibras em regeneração podem encontrar a via específica e estabelecer conexões corretas. O que ainda não se sabe é que combinação de moléculas induz/inibe o potencial de regeneração do tecido e que mecanismos permitem aos neurônios formarem conexões específicas com os alvos com os quais são programados a fazer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve), the pterygopalatine ganglion (located in the pterygopalatine fossa), the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve), and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen). The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spastic paraplegia, optic atrophy, and neuropathy (SPOAN) is an autosomal recessive complicated form of hereditary spastic paraplegia, which is clinically defined by congenital optic atrophy, infancy-onset progressive spastic paraplegia and peripheral neuropathy. In this study, which included 61 individuals (age 5-72 years, 42 females) affected by SPOAN, a comprehensive motor and functional evaluation was performed, using modified Barthel index, modified Ashworth scale, hand grip strength measured with a hydraulic dynamometer and two hereditary spastic paraplegia scales. Modified Barthel index, which evaluate several functional aspects, was more sensitive to disclose disease progression than the spastic paraplegia scales. Spasticity showed a bimodal distribution, with both grades 1 (minimum) and 4 (maximum). Hand grip strength showed a moderate inverse correlation with age. Combination of early onset spastic paraplegia and progressive polyneuropathy make SPOAN disability overwhelming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neurociência compreende o estudo do controle neural das funções vegetativas, sensoriais e motoras; dos comportamentos de locomoção, reprodução e alimentação; e dos mecanismos da atenção, memória, aprendizagem, emoção, linguagem e comunicação. Tem, portanto, uma importante área de interface com a Psicologia. Dentre seus objetivos, a neurociência busca esclarecer os mecanismos das doenças neurológicas e mentais por meio do estudo do sistema nervoso normal e patológico. Sua evolução no Brasil tem ocorrido desde meados do século passado, e seu desenvolvimento foi incentivado pela criação de sociedades científicas específicas. O presente artigo relata esse desenvolvimento e descreve os principais grupos atuantes na neurociência brasileira.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUNDAMENTO: A recuperação da freqüência cardíaca após o eletrocardiograma de esforço em esteira ergométrica é modulada pelo sistema nervoso autônomo. A análise da variabilidade da freqüência cardíaca (VFC) pode fornecer informações valiosas sobre o controle do sistema nervoso autônomo sobre o sistema cardiovascular. OBJETIVO: O objetivo deste estudo foi testar a hipótese de associação entre a recuperação da freqüência cardíaca após teste de esforço em esteira ergométrica e a variabilidade da freqüência cardíaca. MÉTODOS: Foram estudamos 485 indivíduos sem evidência de cardiopatia com média de idade de 42± 12,1 (faixa etária de 15 a 82) anos, 281 (57.9%) dos quais do sexo feminino, submetidos a um teste de esforço em esteira ergométrica e avaliação da VFC nos domínios do tempo (SDNN, SDANN, SDNNi, rMSSD e pNN50) e da freqüência (LF, HF, VLF e razão LF/HF) durante monitoramento eletrocardiográfico ambulatorial de 24 horas. RESULTADOS: A recuperação da freqüência cardíaca foi de 30 ± 12 batimentos no 1º minuto e 52± 13 batimentos no 2º minuto após o exercício. Os indivíduos mais jovens de recuperaram mais rápido do 2º ao 5º minuto após o exercício (r = 0,19-0,35, P < 0,05). As mulheres se recuperaram mais rápido que os homens (4 ± 1,1 batimentos a menos no 1º minuto, p < 0,001; 5,7 ± 1,2 batimentos a menos no 2º minuto, p < 0,01; e 4,1± 1,1 batimentos a menos no 3º minuto, p < 0.001). Não houve correlação significante entre a recuperação da freqüência cardíaca e a VFC no 1º e 2º minutos após o exercício. Os índices SDNN, SDANN, SDNNi, rMSSD e pNN50 só apresentaram uma correlação significante com a recuperação da freqüência cardíaca no 3º e 4º minutos. CONCLUSÃO: A hipótese de associação entre recuperação da freqüência cardíaca e VFC em 24 horas nos primeiros dois minutos após o exercício não foi comprovada neste estudo. A recuperação da freqüência cardíaca foi associada com idade e sexo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Estimar a proporção de automedicação em adultos de baixa renda e identificar fatores associados. MÉTODOS: Foram utilizados dados de inquérito populacional realizado no município de São Paulo em 2005, cujo plano amostral incluiu dois domínios, favela e não favela, com amostragem por conglomerados em dois estágios, totalizando 3.226 indivíduos elegíveis. Além de características sociodemográficas e econômicas, foram analisados: uso de medicamentos nos 15 dias anteriores à entrevista, tipo de acesso (gratuito, comprado ou outra) aos medicamentos e os tipos de morbidades (crônicas ou agudas) tratadas, em análise de regressão logística múltipla. RESULTADOS: A proporção de automedicação foi de 27% a 32%. Automedicação esteve fortemente associada à morbidade aguda, ao acesso ao medicamento por compra, à idade menor que 47 anos e medicamentos do grupo terapêutico que atuam no sistema nervoso central. O grupo que atua no sistema nervoso central foi o mais utilizado na automedicação. CONCLUSÕES: O acesso gratuito aos medicamentos mostrou-se fator de proteção para a automedicação. A distribuição de medicamentos e o atendimento adequado devem ser considerados para orientação e redução dos riscos que o uso irracional de medicamentos pode gerar à saúde.