76 resultados para 091207 Metals and Alloy Materials
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
The wide production of construction and demolition waste and its illegal deposition are serious current problems in Brazil. This research proposes to evaluate the feasibility of using aggregate from recycled construction and demolition waste (RCDW) in pavement applications. A laboratory program was conducted by geotechnical characterization, bearing capacity and repeated load triaxial tests. The results show that the composition and the compactive effort influence on the physical characteristics of the RCDW aggregate. The compaction process has promoted a partial crushing and breakage of RCDW particles, changing the grain-size distribution and increasing the percentage of cubic grains. This physical change contributes to a better densification of the RCDW aggregate and consequently an improvement in bearing capacity, resilient modulus and resistance to permanent deformation. The results have shown that the RCDW aggregate may be utilized as coarse base and sub-base layer for low-volume roads. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 mu m). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B(50) and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ethylene/vinyl acetate (EVA) copolymer. as latex or redispersable powder, is added to mortars and concrete to improve the fracture toughness, impermeability and bond strength to various substrates. The physical and chemical interactions were already proved after one day of hydration but during the first hour just the physical interaction was identified and some evidences of a chemical interaction. The aim of this paper was to evaluate the chemical interaction between EVA and Portland cement during the first hours of hydration in the thermogravimetric analysis. The results confirmed that the EVA hydrolyses in pH alkaline and consumes calcium ions from the solution, forming an organic salt (calcium acetate). reducing the calcium hydroxide content. And, its interaction occurred in the first 15 min of hydration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A total of 202 fish, representing 16 species, were collected during 2008 (March-October) in the Tanquan region of the Piracicaba River using nets. Flesh samples were collected and analyzed, using inductively coupled plasma-optical emission spectroscopy for Al, As, Cd, Co Cr, Cu, Mn, Mo, Ni, Ph, Se, Sn, Sr, and Zn. The results showed that the flesh of these fish all contained extremely high levels of Al and Sr, and moderately high levels of Cr, As, Zn, Ni. Mn and Pb. The metals were higher in these fish during rainy season, with fish collected during the months of March and October being the highest. In addition, the accumulation of metals was species-dependent. Cascudos (Hypostomus punctatus) and piranhas (Serrasalmus spilopleura) exhibited high levels of almost all of the metals, while curimbata (Prochilodus lineatus) had moderate levels. A few species, including pacu (Piaractus mesopotamicus) and dourado (Salminus maxillosus), had very low levels of most metals. The results show that the Piracicaba River Basin is widely contaminated with high levels of many toxic heavy metals, and that human consumption of some fish species is a human health concern. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around -23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: To report a series of patients with symptomatic internal carotid artery (ICA) occlusion treated with angioplasty and stents. MATERIALS AND METHODS: From a consecutive series of 50 patients experiencing neurologic ischemic symptoms and shown by conventional ultrasonography (US) to have a total ICA occlusion, 16 patients (ages 45-79 years; mean, 63 y; 10 men) were selected between August 2006 to September 2008 to be treated with angioplasty based on discovery of an open ICA distal to the occlusion through contrast-enhanced echo Doppler imaging and/or multislice contrast computed tomography (CT). Angioplasty and stent placement were performed under cerebral protection. Follow-up duplex imaging was performed at 14 days and 3 months and every 6 months thereafter and CT follow-up was performed at 2-9 months; the mean follow-up period was 9.9 months. RESULTS: Lesion crossing and stent placement was successful in 13 of 16 patients. There were no deaths, conversions, cardiac complications, or major strokes. One patient had a transient mild hemiparesis in the upper limb, with total recovery in 3 months. At follow-up, all 13 patients with a good initial result remained with patent arterial lumens and resolution of neurologic ischemic symptoms. After 2-9 months, ICAs with a ""string sign"" had calibers close or equal to those of normal arteries. CONCLUSIONS: Angioplasty with stent placement is an effective treatment with a low morbidity rate for selected patients who continue to experience neurologic ischemic symptoms despite US findings of total occlusion of the ICA.
Resumo:
Organophosphate toxic agents are used in agriculture and are currently part of the group of toxic agents which can lead to hearing loss, in which we have solvents, metals and asphyxiation agents. Aim: to analyze the acute ototoxic action of a group of organophosphate agents in the vestibulocochlear system. This is a prospective experimental study. Materials and Methods: we used male albino guinea pigs, broken down into three groups, to which we provided distilled water (group 1 - control), agrotoxic agent - 0.3mg/Kg/day (group 2), agrotoxic - 3 mg/Kg/day (group 3), during 7 seven consecutive days. The most used agrotoxic agent was Tamaron BR (metamidophos). The anatomical evaluation of the cochlea, saccule and utricle was carried out by means of electronic scanning microscopy after the use of the agrotoxic agent. Results: the guinea pigs submitted to the organophosphate presented cochlear morphological alterations with lesions on the three turns analyzed, as well as cilia alterations in the saccule and utricle, intensified according to the agent dosage. Conclusion: the morphological alterations seen in the hair cells exposed to daily doses of organophosphate promote evidences of an acute deleterious effect of agrotoxic agents on the vestibulocochlear system.
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
This paper deals with the effect of silica fume and styrene-butadiene latex (SBR) on the microstructure of the interfacial transition zone (ITZ) between Portland cement paste and aggregates (basalt). Scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis system (EDX) was used to determine the ITZ thickness. In the plain concrete a marked ITZ around the aggregate particles (55 mu m) was observed, while in concretes with silica fume or latex SBR the ITZ was less pronounced (35-40 mu m). However, better results were observed in concretes with silica fume and latex SBR (20-25 mu m). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to analyze mechanical, physical and thermal performance of roofing tiles produced with several formulations of cement-based matrices reinforced with sisal and eucalyptus fibers. The physical properties of the tiles were more influenced by the fiber content of the composite than by the type of reinforcement. The type of the fiber was the main variable for the achievement of the best results of mechanical properties. Exposure to tropical climate has caused a severe reduction in the mechanical properties of the composites. After approximately four months of age under external weathering the toughness of the vegetable fiber-cement fell to 53-68% of the initial toughness at 28 days of age. The thermal performance showed that roofing tiles reinforced with vegetable fiber are acceptable as substitutes of asbestos-cement sheets. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have formed and characterized polycrystalline diamond films with surfaces having hydrogen terminations, oxygen terminations, or fluorine terminations, using a small, simple and novel plasma gun to bombard the diamond surface, formed by plasma assisted CVD in a prior step, with ions of the wanted terminating species. The potential differences between surface regions with different terminations were measured by Kelvin Force Microscopy (KFM). The highest potential occurred for oxygen termination regions and the lowest for fluorine. The potential difference between regions with oxygen terminations and hydrogen terminations was about 80 mV, and between regions with hydrogen terminations and fluorine terminations about 150 mV. Regions with different terminations were identified and imaged using the secondary electron signal provided by scanning electron microscopy (SEM). since this signal presents contrast for surfaces with different electrical properties. The wettability of the surfaces with different terminations was evaluated, measuring contact angles. The sample with oxygen termination was the most hydrophilic, with a contact angle of 75 degrees. hydrogen-terminated regions with 83 degrees, and fluorine regions 93 degrees, the most hydrophobic sample. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Al(2)O(3):Eu(3+)(1%) samples were prepared by combustion, ceramic, and Pechini methods annealed from 400 to 1400 degrees C. XRD patterns indicate that samples heated up to 1000 degrees C present disordered character of activated alumina (gamma-Al(2)O(3)). However, alpha-Al(2)O(3) phase showed high crystallinity and thermostability at 1200-1400 degrees C. The sample characterizations were also carried out by means of infrared spectroscopy (IR), scanning electron microscopy (SEM) and specific surface areas analysis (BET method). Excitation spectra of Al(2)O(3):Eu(3+) samples present broaden bands attributed to defects of Al(2)O(3) matrices and to LMCT state of O -> Eu(3+), however, the narrow bands are assigned to (7)F(0) -> (5)D(J),(5)H(J) and (5)L(J) transitions of Eu(3+) ion. Emission spectra of samples calcined up to 1000 degrees C show broaden bands for (5)D(0) -> (7)F(J) transitions of Eu(3+) ion suggesting that the rare earth ion is in different symmetry sites showed by inhomogeneous line broadening of bands, confirming the predominance of the gamma-alumina phase. For all samples heated from 1200 to 1400 degrees C the spectra exhibit narrow (5)D(0) -> (7)F(J) transitions of Eu(3+) ion indicating the conversion of gamma to alpha-Al(2)O(3) phases, a high intensity narrow peak around 695 nm assigned to R lines of Cr(3+) ion is shown. Al(2)O(3):Eu(3+) heated up to 1100 degrees C presents an increase in the Omega(2) intensity parameter with the increase of temperatures enhancing the covalent character of metal-donor interaction. The disordered structural systems present the highest values of emission quantum efficiencies (eta). CIE coordinates of Al(2)O(3):Eu(3+) are also discussed. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Polycrystalline Ni nanowires were electrodeposited in nanoporous anodized alumina membranes with mean diameter of approximately 42 nm. Their magnetic properties were studied at 300 K, by measurements of recoil curves from demagnetized state and also from saturated state. M(rev) and M(irr) components were obtained and M(rev)(M(irr)) H curves were constructed from the experimental data. These curves showed a behavior that suggests a non-uniform reversal mode influenced by the presence of dipolar interactions in the system. A qualitative approach to this behavior is obtained using a Stoner-Wohlfarth model modified by a mean field term and local interaction fields. (C) 2008 Elsevier B.V. All rights reserved.