538 resultados para Vítor Alves
Resumo:
Purpose We quantified variations of the lingual artery origin, measured the lingual artery origin distance from clinical relevant landmarks and compared the lingual artery diameters with normal and variable origin. Methods Forty-two formalin fixed male cadavers were bilaterally evaluated. Measurements were performed with the aid of an electronic digital caliper. Results The origin distances from the common carotid artery bifurcation was 1.05 +/- 0.11 and 1.02 +/- 0.11 cm for the right and left lingual arteries respectively with no differences compared to the lingual-facial trunks. The diameters of the lingual arteries were 0.25 +/- 0.01 and 0.26 +/- 0.01 cm for the right and left sides, respectively, while the lingual facial trunks showed diameters of 0.21 +/- 0.02 and 0.24 +/- 0.02 cm for the right and left sides, respectively. Conclusions The present study adds information on the lingual artery diameter and its anatomical relation to clinically useful landmarks.
Resumo:
Double aneuploidy, (48,XXY,+21) of maternal origin in a child born to a 13-year-old mother: evoluation of the maternal folate metabolism: The occurrence of non-mosaic double trisomy is exceptional in newborns. In this paper, a 48,XXY,+21 child, the parental origin of the extra chromosomes and the evaluation of the maternal folate metabolism are presented. The infant was born to a 13-year-old mother and presented with the typical clinical features of Down syndrome (DS). The origin of the additional chromosomes was maternal and most likely resulted from errors during the first meiotic division. Molecular analysis of 12 genetic polymorphisms involved in the folate metabolism revealed that the mother is heterozygous for the MTHFR C677T and TC2 A67G polymorphisms, and homozygous for the mutant MTRR A66G polymorphism. The maternal homocysteine concentration was 4.7 mu mol/L, a value close to the one considered as a risk factor for DS in our previous study. Plasma methylmalonic acid and serum folate concentrations were 0.17 mu mol/L and 18.4 ng/mL, respectively. It is possible that the presence of allelic variants for the folate metabolism and Hey concentration might have favored errors in chromosomal disjunction (hiring gametogenesis in this young mother. To our knowledge, this is the first patient with non-mosaic Down-Klinefelter born to a teenage mother, resulting from a rare fertilization event combining an abnormal 25,XX,+21 oocyte and a 23,Y spermatozoon.
Resumo:
To determine the relation between neutrophil function and the clinical characteristics of systemic lupus erythematosus ( SLE), the superoxide anion (O(2)(-)) production by neutrophils, mediated by Fc gamma R and Fc gamma R/CR cooperation, was studied in 64 SLE patients classified according to their prevalent clinical manifestations. Three clinically distinct patterns were designated: ( 1) manifestations associated with the occurrence of cytotoxic antibodies ( SLE-I group); ( 2) manifestations associated with circulating immune complexes ( IC; SLE-II group), and ( 3) manifestations associated with IC and cytotoxic antibodies ( SLE-III group). O(2)(-) production was evaluated by a lucigenin-dependent chemiluminescent assay in neutrophils stimulated with ICIgG opsonized or not with complement. No difference in O(2)(-) production was observed when neutrophil responses from healthy controls were compared to the unclassified patients. However, when the SLE patient groups were considered, the following differences were observed: ( 1) SLE-I neutrophils showed lower O(2)(-) production mediated by the IgG receptor ( Fc gamma R) with the cooperation of complement receptors ( Fc gamma R/ CR) than observed in the SLE-II, SLE-III, and healthy groups; ( 2) neutrophils from the SLE-II group showed a decreased O(2)(-) production mediated by Fc gamma R/ CR compared to the SLE-III group, ( 3) SLE-III neutrophils produced more O(2)(-) than neutrophils from the SLE-II and control groups, and ( 4) CR showed inefficiency in mediating the O(2)(-) production by neutrophils from the SLE-I group. Comparative experiments on the kinetics of chemiluminescence ( CL; T(max) and CL(max)) disclosed differences only for the SLE- I group. Taken together, these results suggest that differences in oxidative metabolism of neutrophils mediated by Fc gamma R/ CR may reflect an acquired characteristic of disease associated with distinct clinical manifestations.
Resumo:
The objective of this report is to document the effects of an aerobic training program on myocardial perfusion, and endothelial function abnormalities, and on the relief of angina in a patient with microvascular myocardial ischemia. A 53-year-old female patient exhibited precordial pain on effort and angiographically normal coronaries. Her symptoms had been present for 4 yrs despite pharmacologic treatment for the control of risk factors, with myocardial perfusion scintigraphy revealing an extensive reversible perfusion defect. She was submitted to aerobic training for 4 mos, obtaining significant improvement of the anginal symptoms. Additionally, after the aerobic training program, scintigraphy revealed the disappearance of the myocardial perfusion defect, with a marked improvement of endothelium-dependent vasodilatory response and an improved quality-of-life score. These results suggest that aerobic training can improve endothelial function, leading to a reduction of ischemia and an improved quality-of-life in patients with microvascular myocardial ischemia.
Resumo:
293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.
Resumo:
This article presents data on the fortification of foods, necessary as an important public health approach for the success in reducing anemia. The use of food vehicles, iron salts and their costs, as well as recent work on iron fortification of foods in Brazil are reviewed. Recent research serves as a cornerstone for countries that attempt to implement permanent, long-lasting iron fortification programs aimed at the prevention of anemia considering cultural habits, type of iron salts and at-risk groups.
Resumo:
P>Background The nonclassical human leucocyte antigen (HLA)-G molecule has been well recognized as a tolerogenic molecule and few studies have evaluated the role of the molecule in inflammatory cutaneous autoimmune diseases. Objectives To evaluate the expression of HLA-G in skin specimens of patients with psoriasis and to analyse its correlation with epidemiological and clinical variables. Methods Thirty untreated patients with psoriasis and 32 healthy individuals were enrolled. Immunohistochemistry was applied to identify HLA-G expression in formalin-fixed paraffin-embedded cutaneous skin biopsies. Results Soluble and membrane-bound HLA-G expression was detected in 30 (90%) of the skin specimens from patients presenting clinical and histopathological features of psoriasis. Although infiltrating lymphomononuclear cells of the dermis exhibited HLA-G expression, the epidermis was primarily targeted. HLA-G expression was also observed in 27% (three of 11) of the specimens that exhibited no clinical and histopathological features of psoriasis (nonaffected areas). In contrast, skin specimens obtained from healthy individuals exhibited no HLA-G expression (P < 0 center dot 0001). The intensity of HLA-G expression was not associated with type I/II psoriasis, Psoriasis Area and Severity Index score or clinical forms. Conclusions As the HLA-G molecule was consistently expressed in affected and, to a lesser extent, in nonaffected areas of untreated patients with psoriasis, irrespective of the severity of the clinical variants, one may hypothesize that the presence of HLA-G may be responsible, at least in part, for the regulation of autoimmune effector cells.
Resumo:
Bone deposition and bone resorption are ongoing dynamic processes, constituting bone remodeling. Some bone tumors, such as osteosarcoma (OS), stimulate focal bone deposition. OS is the most common primary bone tumor in children and young adults. A complex network of genes regulates bone remodeling and alterations in its expression levels can influence the genesis and progression of bone diseases, including OS. We hypothesized that the expression profiles of bone remodeling regulator genes would be correlated with OS biology and clinical features. We used real-time PCR to evaluate the mRNA levels of the tartrate-resistant acid phosphatase (ACP5), colony stimulating factor-1 (CSF1R), bone morphogenetic protein 7 (BMP7), collagen, type XI, alpha 2 (COL11A2), and protein tyrosine phosphatases zeta 1 (PTPRZ1) genes, in 30 OS tumor samples and correlated with clinical and histological data. All genes analyzed, except CSF1R, were differentially expressed when compared with normal bone expression profiles. In our results, OS patients with high levels of COL11A2 mRNA showed worse overall (p = 0.041) and event free survival (p = 0.037). Also, a trend for better overall survival was observed in patients with samples showing higher expression of BMP7 (p =0.067). COL11A2 overexpression and BMP7 underexpression could collaborate to OS tumor growth, through its central role in bone remodeling process. (C) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1142-1148, 2010
Resumo:
Sepsis is a systemic inflammatory response resulting from the inability of the host to contain the infection locally. Previously, we demonstrated that during severe sepsis there is a marked failure of neutrophil migration to the infection site, which contributes to dissemination of infection, resulting in high mortality. IL-17 plays an important role in neutrophil recruitment. Herein, we investigated the role of IL-17R signaling in polymicrobial sepsis induced by cecal ligation and puncture (CLP). It was observed that IL-17R-deficient mice, subjected to CLP-induced non-severe sepsis, show reduced neutrophil recruitment into the peritoneal cavity, spread of infection, and increased systemic inflammatory response as compared with C57BL/6 littermates. As a consequence, the mice showed an increased mortality rate. The ability of IL-17 to induce neutrophil migration was demonstrated in vivo and in vitro. Beside its role in neutrophil recruitment to the infection focus, IL-17 enhanced the microbicidal activity of the migrating neutrophils by a mechanism dependent on NO. Therefore, IL-17 plays a critical role in host protection during polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7846-7854.
Resumo:
Sepsis is still a major cause of mortality in the intensive critical care unit and results from an overwhelming immune response to the infection. TNF signaling pathway plays a central role in the activation of innate immunity in response to pathogens. Using a model of polymicrobial sepsis by i.p. injection of cecal microflora, we demonstrate a critical role of TNFR1 and R2 activation in the deregulated immune responses and death associated with sepsis. A large and persistent production of TNF was found in wild-type (B6) mice. TNFR1/R2-deficient mice, compared with B6 mice, survive lethal polymicrobial infection with enhanced neutrophil recruitment and bacterial clearance in the peritoneal cavity. Absence of TNFR signaling leads to a decreased local and systemic inflammatory response with diminished organ injury. Furthermore, using TNFR1/R2-deficient mice, TNF was found to be responsible for a decrease in CXCR2 expression, explaining reduced neutrophil extravasation and migration to the infectious site, and in neutrophil apoptosis. In line with the clinical experience, administration of Enbrel, a TNF-neutralizing protein, induced however only a partial protection in B6 mice, with no improvement of clinical settings, suggesting that future TNF immunomodulatory strategies should target TNFR1 and R2. In conclusion, the present data suggest that the endogenous TNFR1/R2 signaling pathway in polymicrobial sepsis reduces neutrophil recruitment contributing to mortality and as opposed to pan-TNF blockade is an important therapeutic target for the treatment of polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7855-7864.
Resumo:
Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2(-/-) mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naive WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein-coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2(-/-) mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis.
Resumo:
The reduction of neutrophil migration to an infectious focus is associated with a high mortality in severe sepsis. Previously, we showed that heme oxygenase (HO) products downregulate neutrophil recruitment in a noninfectious inflammatory model. The present study was designed to determine the role of HO in sepsis induced by cecal ligation and puncture (CLP) model. We demonstrated that pretreatment, but not the combination of pretreatment plus posttreatment with zinc protoporphyrin IX (ZnPP IX), an HO inhibitor, prevented the reduction of CXCR2 on circulating neutrophils and the failure of intraperitoneal neutrophil migration to the site of infection. Consequently, bacterial dissemination, systemic inflammatory response, and organ injury were prevented. In addition, pretreatment with the HO inhibitor avoided hypotension and consequently increased survival. Moreover, in mice subjected to severe CLP, the pretreatment, but not the combination of pretreatment plus posttreatment with ZnPP IX, prevented the increase of plasmatic free heme observed in nontreated severe CLP. The administration of exogenous hemin to mice subjected to moderate sepsis consistently increased the mortality rate. Furthermore, hemin resulted in a reduction of neutrophil migration both in vivo and in vitro. Altogether, our results demonstrated that pretreatment with the HO inhibitor prevents the pathological findings in severe CLP. However, the combination of pretreatment plus posttreatment with ZnPP IX enhances sepsis severity because of an increase in circulating levels of heme, which is deleterious to the host tissues and also inhibits neutrophil migration.
Resumo:
Cannabidiol (CBD) is a cannabinoid component from Cannabis sativa that does not induce psychotomimetic effects and possess anti-inflammatory properties. In the present study we tested the effects of CBD in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying these effects. Periodontal disease was induced by a ligature placed around the mandible first molars of each animal. Male Wistar rats were divided into 3 groups: control animals; ligature-induced animals treated with vehicle and ligature-induced animals treated with CBD (5 mg/kg, daily). Thirty days after the induction of periodontal disease the animals were sacrificed and mandibles and gingival tissues removed for further analysis. Morphometrical analysis of alveolar bone loss demonstrated that CBD-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-kappa B ligand RANKL/RANK. Moreover, gingival tissues from the CBD-treated group showed decreased neutrophil migration (MPO assay) associated with lower interleukin (IL)-1 beta and tumor necrosis factor (TNF)-alpha production. These results indicate that CBD may be useful to control bone resorption during progression of experimental periodontitis in rats. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2(-/-)) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants.
Resumo:
The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.