91 resultados para true isidium
Resumo:
We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D(4). We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D(4) pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.
Resumo:
In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.
Resumo:
Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.
Resumo:
The objectives of this study were to characterise four essential oils (EO) chemically and to evaluate their effect on ruminal fermentation and methane emission in vitro. The investigated EO were isolated from Achillea santolina, Artemisia judaica, Schinus terebinthifolius and Mentha microphylla, and supplemented at four levels (0, 25, 50 and 75 l) to 75ml of buffered rumen fluid plus 0.5 g of substrate. The main components of the EO were piperitone (49.1%) and camphor (34.5%) in A. judaica, 16-dimethyl 15-cyclooactdaiene (60.5%) in A. santolina, piperitone oxide (46.7%) and cis-piperitone oxide (28%) in M. microphylla, and -muurolene (45.3%) and -thujene (16.0%) in S. terebinthifolius. The EO from A. santolina (at 25 and 50 l), and all levels of A. judaica increased the gas production significantly, but S. terebinthifolius (at 50 and 75 l), A. santolina (at 75 l) and all levels of M. microphylla decreased the gas production significantly in comparison with the control. The highest levels of A. santolina and A. judaica, and all doses from M. microphylla EO inhibited the methane production along with a significant reduction in true degradation of dry matter and organic matter, protozoa count and NH3-N concentration. It is concluded that the evaluated EO have the potential to affect ruminal fermentation efficiency and the EO from M. microphylla could be a promising methane mitigating agent.
Resumo:
The objective of this article is to examine the presence of cinema in World Fairs between the 1893 World`s Columbian Exposition in Chicago and 1939 (the New York World`s Fair). As an integral part of a visual culture constructed by these spaces to celebrate capitalism, the trajectory of cinema is identified with these world fairs due to its ability to entertain and, at the same time, to educate. Cinema was established as a means of mass communication during the First World War and afterwards would participate more actively in the symbolic disputes of a world about to enter the second global conflict. It would reach a broader public, becoming the main `showcase` in which nations projected virtues to be celebrated. The new striking visual spectacle assumed, within this context, greater emphasis through films idealized as true cinematographic monuments.
Resumo:
To facilitate the implementation of evidence-based skin and pressure ulcer (PU) care practices and related staff education programs in a university hospital in Brazil, a cross-sectional study was conducted to evaluate nurses` knowledge about PU prevention, wound assessment, and staging. Of the 141 baccalaureate nurses (BSN) employed by the hospital at the time of the study, 106 consented to participate. Using a Portuguese version of Pieper`s Pressure Ulcer Knowledge Test (PUKT), participants were asked to indicate whether 33 statements about PU prevention and eight about PU assessment and staging were true or false. For the 33 prevention statements, the average number answered correctly was 26.07 (SD 4.93) and for the eight assessment statements the average was 4.59 (SD 1.62). Nurses working on inpatient clinical nursing units had significantly better scores (P = 0.000). Years of nursing experience had a weak and negative correlation with correct PUKT scores (r = -0.21, P = 0.033) as did years of experience working in the university hospital (r = -.179, P <071). Incorrect responses were most common for statements related to patient positioning, massage, PU assessment, and staging definitions. The results of this study confirm that nurses have an overall understanding of PU prevention and assessment principles but important knowledge deficits exist. Focused continuing education efforts are needed to facilitate the implementation of evidence-based care.
Resumo:
Moreira, A, Arsati, F, Cury, PR, Franciscon, C, Oliveira, PR, and Araujo, VC. Salivary immunoglobulin a response to a match in top-level brazilian soccer players. J Strength Cond Res 23(7): 1968-1973, 2009-It has been suggested that several parameters of mucosal immunity, including salivary immunoglobulin A (s-IgA), are affected by heavy exercise either in field sports or in the laboratory environment. Few observations have been made during a true sporting environment, particularly in professional soccer. We tested the hypothesis that salivary IgA levels will be decreased after a 70-minute regulation in a top-level professional soccer friendly match. Saliva samples from 24 male professional soccer players collected before and after the match were analyzed. Salivary immunoglobulin A concentration was measured by enzyme-linked immunosorbent assay and expressed as the absolute concentration (s-IgAabs), s-IgA relative to total protein concentration (IgA-Pro), and the secretion rate of IgA (s-IgArate). Rate of perceived exertion (RPE) was used to monitor the exercise intensity. The paired t-test showed no significant changes in s-IgAabs and s-IgArate (p > 0.05) from PRE to POST match. However, a significant (p < 0.05) increase in total protein concentration (1.46 +/- 0.4 to 2.00 +/- 07) and a decrease in IgA-Pro were observed. The best and most significant correlation was obtained with the RPE and changes in IgA-Pro (rs = -0.43) and could indicate that this expression may be an interesting marker of intensity in a soccer match. However, further investigation regarding exercise intensity, protein concentration, and immune suppression, particularly in team sports, is warranted. From a practical application, the variability of the responses among the players leads us to suggest that there is a need to individually analyze the results with team sports. Some athletes showed a decrease in s-IgA expressions, suggesting the need for taking protective actions to minimize contact with cold viruses or even reducing the training load.
Resumo:
The airflow velocities and pressures are calculated from a three-dimensional model of the human larynx by using the finite element method. The laryngeal airflow is assumed to be incompressible, isothermal, steady, and created by fixed pressure drops. The influence of different laryngeal profiles (convergent, parallel, and divergent), glottal area, and dimensions of false vocal folds in the airflow are investigated. The results indicate that vertical and horizontal phase differences in the laryngeal tissue movements are influenced by the nonlinear pressure distribution across the glottal channel, and the glottal entrance shape influences the air pressure distribution inside the glottis. Additionally, the false vocal folds increase the glottal duct pressure drop by creating a new constricted channel in the larynx, and alter the airflow vortexes formed after the true vocal folds. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.
Resumo:
This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents first material tests on HDPE and PVC, and subsequently impact tests on plates made of the same materials. Finally, numerical simulations of the plate impact tests are compared with the experimental results. A rather comprehensive series of mechanical material tests were performed to disclose the behaviour of PVC and HDPE in tension and compression. Quasi-static tests were carried out at three rates in compression and two in tension. Digital image correlation. DIC, was used to measure the in-plane strains, revealing true stress-strain curves and allowing to analyze strain-rate sensitivity and isotropy of Poisson`s ratio. In addition, dynamic compression tests were carried out in a split-Hopkinson pressure bar. Quasi-static and dynamic tests were also performed on clamped plates made of the same PVC and HDPE materials, using an optical technique to measure the full-field out-of-plane deformations. These tests, together with the material data, were used for comparative purposes of a finite element analysis. A reasonable agreement between experimental and numerical results was achieved. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The salt-induced precipitation of lysozyme from aqueous solutions was studied through precipitation assays in which the equilibrium compositions of the coexisting phases were determined. Lysozyme precipitation experiments were carried out at 5, 15 and 25 degrees C and pH 7.0 with ammonium sulfate, sodium sulfate and sodium chloride as precipitating agents. In these experiments a complete separation of the coexisting phases (liquid and solid) could not be achieved. Nevertheless it was possible to determine the composition of the precipitate. The enzymatic activity of lysozyme in the supernatant phase as well as in the precipitate phase was also determined. The activity balance suggests that there is a relationship between the composition of the true precipitate and the total activity recovery. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.