80 resultados para transport-simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear regime of low-temperature magnetoresistance of double quantum wells in the region of magnetic fields below 1 T is studied both experimentally and theoretically. The observed inversion of the magnetointersubband oscillation peaks with increasing electric current and splitting of these peaks are described by the theory based on the kinetic equation for the isotropic nonequilibrium part of electron distribution function. The inelastic-scattering time of electrons is determined from the current dependence of the inversion field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the electronic and transport properties of zigzag Ni-adsorbed graphene nanoribbons (Ni/GNRs) using ab initio calculations. We find that the Ni adatoms lying along the edge of zigzag GNRs represent the energetically most stable configuration, with an energy difference of approximately 0.3 eV when compared to the adsorption in the middle of the ribbon. The carbon atoms at the ribbon edges still present nonzero magnetic moments as in the pristine GNR even though there is a quenching by a factor of almost five in the value of the local magnetic moments at the C atoms bonded to the Ni. This quenching decays relatively fast and at approximately 9 A from the Ni adsorption site the magnetic moments have already values close to the pristine ribbon. At the opposite edge and at the central carbon atoms the changes in the magnetic moments are negligible. The energetic preference for the antiparallel alignment between the magnetization at the opposite edges of the ribbon is still maintained upon Ni adsorption. We find many Ni d-related states within an energy window of 1 eV above and below the Fermi energy, which gives rise to a spin-dependent charge transport. These results suggest the possibility of manufacturing spin devices based on GNRs doped with Ni atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally study the Aharonov-Bohm-conductance oscillations under external gate voltage in a semiconductor quantum ring with a radius of 80 nm. We find that, in the linear regime, the resistance-oscillation plot in the voltage-magnetic-field plane corresponds to the quantum ring energy spectra. The chessboard pattern assembled by resistance diamonds, while loading the ring, is attributed to a short electron lifetime in the open configuration, which agrees with calculations within the single-particle model. Remarkably, the application of a small dc current allows observing strong deviations in the oscillation plot from this pattern accompanied by a magnetic-field symmetry break. We relate such behavior to the higher-order-conductance coefficients determined by electron-electron interactions in the nonlinear regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present density of states and electronic transport calculations of single vacancies in carbon nanotubes. We confirm that the defect reconstructs into a pentagon and a nonagon, following the removal of a single carbon atom. This leads to the formation of a dangling bond. Finally, we demonstrate that care must be taken when calculating the density of states of impurities in one-dimensional systems in general. Traditional treatments of these systems using periodic boundary conditions leads to the formation of minigaps even in the limit of large unit cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 angstrom X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB(7XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and dynamical properties of liquid trimethylphosphine (TMP), (CH(3))(3)P, as a function of temperature is investigated by molecular dynamics (MD) simulations. The force field used in the MD simulations, which has been proposed from molecular mechanics and quantum chemistry calculations, is able to reproduce the experimental density of liquid TMP at room temperature. Equilibrium structure is investigated by the usual radial distribution function, g(r), and also in the reciprocal space by the static structure factor, S(k). On the basis of center of mass distances, liquid TMP behaves like a simple liquid of almost spherical particles, but orientational correlation due to dipole-dipole interactions is revealed at short-range distances. Single particle and collective dynamics are investigated by several time correlation functions. At high temperatures, diffusion and reorientation occur at the same time range as relaxation of the liquid structure. Decoupling of these dynamic properties starts below ca. 220 K, when rattling dynamics of a given TMP molecules due to the cage effect of neighbouring molecules becomes important. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624408]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of ascorbate by neuroblastoma cells using a ruthenium oxide hexacyanoferrate (RuOHCF)-modified carbon fiber disc (CFD) microelectrode (r = 14.5 mu m) was investigated. By use of the proposed electrochemical sensor the amperometric determination of ascorbate was performed at 0.0 V in minimum essential medium (MEM, pH = 7.2) with a limit of detection of 25 mu mol L(-1). Under the optimum experimental conditions, no interference from MEM constituents and reduced glutathione (used to prevent the oxidation of ascorbate during the experiments) was noticed. The stability of the RuOHCF-modified electrode response was studied by measuring the sensitivity over an extended period of time (120 h), a decrease of around 10% being noticed at the end of the experiment. The rate of ascorbate uptake by control human neuroblastoma SH-SY5Y cells, and cells transfected with wild-type Cu,Zn-superoxide dismutase (SOD WT) or with a mutant typical of familial amyotrophic lateral sclerosis (SOD G93A), was in agreement with the level of oxidative stress in these cells. The usefulness of the RuOHCF-modified microelectrode for in vivo monitoring of ascorbate inside neuroblastoma cells was also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supply of competent larvae to the benthic habitat is a major determinant of population dynamics in coastal and estuarine invertebrates with an indirect life cycle. Larval delivery may depend not only on physical transport mechanisms, but also on larval behavior and physiological progress to the competent stage. Yet, the combined analysis of such factors has seldom been attempted. We used time-series analyses to examine tide- and wind-driven mechanisms responsible for the supply of crab megalopae to an estuarine river under a major marine influence in SW Spain, and monitored the vertical distribution of upstream moving megalopae, their net flux and competent state. The species Panopeus africanus (estuarine), Brachynotus sexdentatus (euryhaline) and Nepinnotheres pinnotheres (coastal) comprised 80% of the whole sample, and responded in a similar way to tide and wind forcing. Tidal range was positively correlated to supply, with maxima 0 to 1 d after spring tides, suggesting selective tidal stream transport. Despite being extensively subjected to upwelling, downwind drift under the effect of westerlies, not Ekman transport, explained residual supply variation at our sampling area. Once in the estuary, net flux and competence state matched the expected trends. Net upstream flux increased from B. sexdentatus to P. africanus, favoring transport to a sheltered coastal habitat (N. pinnotheres), or to the upper estuary (P. africanus). Competence state was highest in N. pinnotheres, intermediate in B. sexdentatus and lowest in P. africanus, as expected if larvae respond to cues from adequate benthic habitat. P. africanus megalopae were found close to the bottom, not above, rendering slower upstream transport than anticipated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the worldwide increase in demand for biofuels, the area cultivated with sugarcane is expected to increase. For environmental and economic reasons, an increasing proportion of the areas are being harvested without burning, leaving the residues on the soil surface. This periodical input of residues affects soil physical, chemical and biological properties, as well as plant growth and nutrition. Modeling can be a useful tool in the study of the complex interactions between the climate, residue quality, and the biological factors controlling plant growth and residue decomposition. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of aboveground phytomass and litter decomposition, and to validate the model through field experiment data. When studying aboveground growth, burned and unburned harvest systems were compared, as well as the effect of mineral fertilizer and organic residue applications. The simulations were performed with data from experiments with different durations, from 12 months to 60 years, in Goiana, TimbaA(0)ba and Pradpolis, Brazil; Harwood, Mackay and Tully, Australia; and Mount Edgecombe, South Africa. The differentiation of two pools in the litter, with different decomposition rates, was found to be a relevant factor in the simulations made. Originally, the model had a basically unlimited layer of mulch directly available for decomposition, 5,000 g m(-2). Through a parameter optimization process, the thickness of the mulch layer closer to the soil, more vulnerable to decomposition, was set as 110 g m(-2). By changing the layer of mulch at any given time available for decomposition, the sugarcane residues decomposition simulations where close to measured values (R (2) = 0.93), contributing to making the CENTURY model a tool for the study of sugarcane litter decomposition patterns. The CENTURY model accurately simulated aboveground carbon stalk values (R (2) = 0.76), considering burned and unburned harvest systems, plots with and without nitrogen fertilizer and organic amendment applications, in different climates and soil conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently there is a trend for the expansion of the area cropped with sugarcane (Saccharum officinarum L.), driven by an increase in the world demand for biofuels, due to economical, environmental, and geopolitical issues. Although sugarcane is traditionally harvested by burning dried leaves and tops, the unburned, mechanized harvest has been progressively adopted. The use of process based models is useful in understanding the effects of plant litter in soil C dynamics. The objective of this work was to use the CENTURY model in evaluating the effect of sugarcane residue management in the temporal dynamics of soil C. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of soil C, validating the model through field experiment data, and finally to make predictions in the long term regarding soil C. The main focus of this work was the comparison of soil C stocks between the burned and unburned litter management systems, but the effect of mineral fertilizer and organic residue applications were also evaluated. The simulations were performed with data from experiments with different durations, from 1 to 60 yr, in Goiana and Timbauba, Pernambuco, and Pradopolis, Sao Paulo, all in Brazil; and Mount Edgecombe, Kwazulu-Natal, South Africa. It was possible to simulate the temporal dynamics of soil C (R(2) = 0.89). The predictions made with the model revealed that there is, in the long term, a trend for higher soil C stocks with the unburned management. This increase is conditioned by factors such as climate, soil texture, time of adoption of the unburned system, and N fertilizer management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>During the lifetime of an angiosperm plant various important processes such as floral transition, specification of floral organ identity and floral determinacy, are controlled by members of the MADS domain transcription factor family. To investigate the possible non-cell-autonomous function of MADS domain proteins, we expressed GFP-tagged clones of AGAMOUS (AG), APETALA3 (AP3), PISTILLATA (PI) and SEPALLATA3 (SEP3) under the control of the MERISTEMLAYER1 promoter in Arabidopsis thaliana plants. Morphological analyses revealed that epidermal overexpression was sufficient for homeotic changes in floral organs, but that it did not result in early flowering or terminal flower phenotypes that are associated with constitutive overexpression of these proteins. Localisations of the tagged proteins in these plants were analysed with confocal laser scanning microscopy in leaf tissue, inflorescence meristems and floral meristems. We demonstrated that only AG is able to move via secondary plasmodesmata from the epidermal cell layer to the subepidermal cell layer in the floral meristem and to a lesser extent in the inflorescence meristem. To study the homeotic effects in more detail, the capacity of trafficking AG to complement the ag mutant phenotype was compared with the capacity of the non-inwards-moving AP3 protein to complement the ap3 mutant phenotype. While epidermal expression of AG gave full complementation, AP3 appeared not to be able to drive all homeotic functions from the epidermis, perhaps reflecting the difference in mobility of these proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consumption of protein supplements containing amino acids is increasing around the world Aspartate (Asp) and asparagine (Asn) are amino acids metabolized by skeletal muscle. This metabolism involves biochemical pathways that are involved in increasing Krebs cycle activity via anaplerotic reactions. resulting in higher glutamine concentrations. A connection between amino acid supplementation, glycogen concentration, and glucose uptake has been previously demonstrated. The purpose of this study was to evaluate the effect of asp and Asn Supplementation on glucose uptake in rats using three different glycogen concentrations The results indicate that Asp and Asn supplementation in rats with high glycogen concentrations (fed state) further increased the glycogen concentration in the muscle, and decreased in vitro 2-deoxyglucose (a glucose analog.) uptake by the muscle at maximal insulin concentrations When animals had a medium glycogen concentration (consumed lard for 3 days). glucose uptake was higher in the supplemented group at sub-maximal insulin concentrations. We conclude that supplementation of Asp and Asn reduced glucose transport in rat muscle only at higher levels of glycogen. The ingestion of lard for 3 days changed the responsiveness and sensitivity to insulin, and that group had higher levels of insulin sensivity with Asp and Asn supplementation. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the energy system contributions of rowers in three different conditions: rowing on an ergometer without and with the slide and rowing in the water. For this purpose, eight rowers were submitted to 2,000 m race simulations in each of the situations defined above. The fractions of the aerobic (W(AER)), anaerobic alactic (W(PCR)) and anaerobic lactic (W([La-])) systems were calculated based on the oxygen uptake, the fast component of excess post-exercise oxygen uptake and changes in net blood lactate, respectively. In the water, the metabolic work was significantly higher [(851 (82) kJ] than during both ergometer [674 (60) kJ] and ergometer with slide [663 (65) kJ] (P <= 0.05). The time in the water [515 (11) s] was higher (P < 0.001) than in the ergometers with [398 (10) s] and without the slide [402 (15) s], resulting in no difference when relative energy expenditure was considered: in the water [99 (9) kJ min(-1)], ergometer without the slide [99.6 (9) kJ min(-1)] and ergometer with the slide [100.2 (9.6) kJ min(-1)]. The respective contributions of the WAER, WPCR and W[La-] systems were water = 87 (2), 7 (2) and 6 (2)%, ergometer = 84 (2), 7 (2) and 9 (2)%, and ergometer with the slide = 84 (2), 7 (2) and 9 (1)%. (V) over dotO(2), HR and lactate were not different among conditions. These results seem to indicate that the ergometer braking system simulates conditions of a bigger and faster boat and not a single scull. Probably, a 2,500 m test should be used to properly simulate in the water single-scull race.