63 resultados para spore dosimetry
Resumo:
Objectives. The diagnosis of root fractures by conventional radiographs is still difficult because of limitations of 2D images. Cone-beam volumetric tomography improves the diagnosis capacity in dentistry, such as increased radiation dose to the patient and presence of artifacts on the image. Study design. This study compared the images obtained on conventional periapical radiographs and 3D scans (Accuitomo 3DX) for the diagnosis of root fractures. Twenty patients with suspected root fractures were submitted to examination by periapical radiography and CBCT. Two professionals, unaware of the symptomatology, examined these radiographs and CBCT images according to pre-established scores, which were later checked against the signs and symptoms. Results. The results revealed statistical difference for cone-beam volumetric tomography compared with conventional radiographs in the diagnosis of root fractures. Conclusion. It could be concluded that cone-beam volumetric tomography was better than conventional radiography in the diagnosis of root fractures, thereby constituting an excellent alternative for diagnosis in general practice. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 270-277)
Resumo:
Introduction: Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. Objective: To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. Materials and methods: Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay (R) 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay (R) 60 kVp, Nomad (R) 60 kVp and Rextar (R) 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. Results: Statistical analysis showed good quality imaging for all system, with the combination of Nomad (R) and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p < 0.05). For patient safety, the exposure rate was determined and exit dose rates for MinRay (R) at 60 kVp, MinRay (R) at 70 kVp, AnyRay (R), Nomad (R) and Rextar (R) were 3.4 mGy/s, 4.5 mGy/s, 13.5 mGy/s, 3.8 mGy/s and 2.6 mGy/s respectively. The kVp of the AnyRay (R) system was the most stable, with a ripple of 3.7%. Short-term variations in the tube output of all the devices were less than 10%. AnyRay (R) presented higher estimated effective dose than other machines. Occupational dosimetry showed doses at the operator`s hand being lowest with protective shielding (Nomad (R): 0.1 mu Gy). It was also low while using remote control (distance > 1 m: Rextar (R) < 0.2 mu Gy, MinRay (R) < 0.1 mu Gy). Conclusions: The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m(-3)]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16A degrees C and above 25A degrees C caused a reduction in the concentration (CFU m(-3)) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.
Resumo:
The present study is part of an ongoing investigation into the characteristics of Myxozoan parasites of Brazilian freshwater fish and was carried out using morphology, histopathology and electron microscopy analysis. A new Myxosporea species (Henneguya pseudoplatystoma) is described causing an important reduction in gill function in the farmed pintado (a hybrid fish from a cross between Pseudoplatystoma corruscans and Pseudoplatystoma fasciatum), which is a commercially important South American catfish. From a total of 98 pintado juveniles from fish farms in the states of Sao Paulo and Mato Grosso do Sul (Brazil), 36 samples (36.7%) exhibited infection of the gill filaments. infection was intense, with several plasmodia occurring on a same gill filament. The plasmodia were white and measured up to 0.5 mm in length; mature spores were ellipsoidal in the frontal view, measuring 33.2 +/- 1.9 mu m in total length, 10.4 +/- 0.6 mu m in body length, 3.4 +/- 0.4 mu m in width and 22.7 +/- 1.7 mu m in the caudal process. The polar capsules were elongated, measuring 3.3 +/- 0.4 mu m in length and 1.0 +/- 0.1 mu m in width and the polar filaments had six to seven turns. Histopathological analysis revealed the parasite in the connective tissue of the gill filaments and lamella. No inflammatory process was observed, but the development of the plasmodia reduced the area of functional epithelium. Ultrastructural analyses revealed a single plasmodial wall, which was in direct contact with the host cells and had numerous projections in direction of the host cells as well as extensive pinocytotic canals. A thick layer (2-6 mu m) of fibrous material and numerous mitochondria were found in the ectoplasm. Generative cells and the earliest stage of sporogenesis were seen more internally. Advanced spore developmental stages and mature spores were found in the central portion of the plasmodia. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this report, we describe the morphology and histopathology of Myxobolus salminus n. sp., a parasite of the gill filaments of wild Salminus brasiliensis (dourado) from the Brazilian Pantanal. The small polysporic plasmodia were similar to 100 mu m in diameter and the development was asynchronous. The mature spores were oval to pear shaped and had a smooth wall. The spore measurements were (mean +/- S.D., with range in parentheses): length 10.1 +/- 0.4 mu m (9.6-10.5), width 6.1 +/- 0.4 mu m (5.8-6.6) and thickness 5.0 +/- 0.6 mu m (4.7-5.3). The polar capsules were elongated and of equal size: length 4.6 +/- 0.2 mu m (4.3-4.8) and width 1.7 +/- 0.1 mu m (1.5-1.9). The histological analysis revealed numerous plasmodia in the blood vessels of the gill filaments. The site of parasite development was the wall of the large-caliber blood vessel of the gill filament, with progressive growth towards the lumen, resulting in the obstruction of blood flow, congestion and perivascular edema. The ultrastructural study revealed that the plasmodial wall was composed of two membranes, had numerous pinocytic canals and was in direct contact with the basement membrane of the vessel. The development of the parasite was asynchronous, with mature spores, immature spores and young developmental stages randomly distributed throughout the plasmodium. The prevalence of the parasite was 4.4%. with male and female fish being infected. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work is part of an ongoing investigation into the characteristics of Myxozoan parasites of freshwater fish in Brazil and was carried out using morphology, histopathology and molecular analysis. A new Myxosporea species (Myxobolus cordeiroi) is described infecting the jau catfish (Zungaro jahu). Fifty jau specimens were examined and 78% exhibited plasmodia of the parasite. The plasmodia were white and round, measuring 0.3-2.0 mm in diameter and the development occurred in the gill arch, skin, serosa of the body cavity, urinary bladder and eye. The spores had an oval body and the spore wall was smooth. Partial sequencing of the 18S rDNA gene resulted in a total of 505 bp and the alignment of the sequences obtained from samples in different organs revealed 100% identity. In the phylogenetic analysis, the Myxobolus species clustered into two clades-one primarily parasites of freshwater fish and the other primarily parasites of marine fish. M. cordeiroi n. sp. was clustered in a basal position in the freshwater fish species clade. The histological analysis revealed the parasite in the connective tissue of the different infected sites, thereby exhibiting affinity to this tissue. The plasmodium was surrounded by an outer collagen capsule of fibers with distinct orientation from the adjacent connective tissue and an inner layer composed of delicate collagen fibrils-more precisely reticular fibers. The development of the parasite in the cornea and urinary bladder caused considerable stretching of the epithelium. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chondracanthus chamissoi (C. Agardh) Kutzing is an economically important red seaweed with an extended latitudinal distribution along the south-east Pacific. Here we report on the seasonal in vitro germination of carpospores and tetraspores from four populations distributed from 27 to 41 degrees S on the Chilean coast. Our results show that both types of spores exhibited a different physiological behavior related to the geographic origin of the specimens. Germination occurred throughout the year for both spore types in the four populations. However, for the northern locations (Calderilla, La Herradura and Puerto Aldea) germination was higher in spring, while for the southern location (Lechagua), germination was higher in summer. The growth rate of carposporelings and tetrasporelings varied seasonally in ail locations studied, with higher growth in spring. Among all, carposporelings from Lechagua specimens reached the highest growth rates (9.3 +/- 0.2% d(-1)). However, spores from Herradura and P. Aldea had a good germination and SGR in all seasons and would be good candidates to start spores-based cultivation of this valuable resource in Chile. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
The carrageenophyte Kappaphycus alvarezii was introduced in 1995 and vegetatively propagated in Ubatuba, Sao Paulo State, Brazil, for the purpose of commercial cultivation. This species produces tetraspores mainly in the austral summer and fall. Tetraspore germination and survival were studied under different conditions of temperature, photon flux density, and photoperiod in the laboratory. Field experiments were also carried out. Although tetraspores of K. alvarezii germinated, they had low survival rates, most dying after 20 days. Recruitment of K. alvarezii tetraspores did not occur in experiments conducted in the field. The results indicated that the establishment of K. alvarezii via spore production in the natural environment of the south-east coast of Brazil is rather remote.
Resumo:
A Gram-negative, rod-shaped, non-spore-forming and nitrogen-fixing bacterium, designated ICB 89(T), was isolated from stems of a Brazilian sugar cane variety widely used in organic farming. 16S rRNA gene sequence analysis revealed that strain ICB 89(T) belonged to the genus Stenotrophomonas and was most closely related to Stenotrophomonas maltophilia LMG 958(T), Stenotrophomonas rhizophila LMG 22075(T), Stenotrophomonas nitritireducens L2(T), [Pseudomonas] geniculata ATCC 19374(T), [Pseudomonas] hibiscicola ATCC 19867(T) and [Pseudomonas] beteli ATCC 19861(T). DNA-DNA hybridization together with chemotaxonomic data and biochemical characteristics allowed the differentiation of strain ICB 89(T) from its nearest phylogenetic neighbours. Therefore, strain ICB 89(T) represents a novel species, for which the name Stenotrophomonas pavanii sp. nov. is proposed. The type strain is ICB 89(T) (=CBMAI 564(T) =LMG 25348(T)).
Resumo:
The objective of the present study was to evaluate the effects of different gamma radiation doses on the growth of Alternaria alternata and on the production of toxins alternariol (AOH), and alternariol monomethyl ether (AME) in sunflower seed samples. After irradiation with 2, 5 and 7 kGy, the spore mass was resuspended in sterile distilled water and the suspension was inoculated into sunflower seeds. The number of colony-forming units per gram (CFU/g) was determined after culture on Dichloran Rose Bengal Chloramphenicol and Dichloran Chloramphenicol Malt Extract Agar. The presence of AOH and AME was investigated by liquid chromatography coupled to mass spectrometry. The radiation doses used resulted in a reduction of the number of A. alternata CFU/g and of AOH and AME levels when compared to the nonirradiated control group. Maximum reduction of the fungus (98.5%) and toxins (99.9%) was observed at a dose of 7 and 5 kGy, respectively. Under the present conditions, gamma radiation was found to be an alternative for the control of A. alternata and, consequently, of AOH and AME production in sunflower seeds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the effects of different gamma-radiation doses on the growth of Alternaria alternata in artificially inoculated cereal samples. Seeds and grains were divided into four groups: Control Group (not irradiated), and Groups 1, 2 and 3, inoculated with an A. alternata spore suspension (1 x 10(6) spores/mL) and exposed to 2, 5 and 10 kGy, respectively. Serial dilutions of the samples were prepared and seeded on DRBC (dichloran rose bengal chloramphenicol agar) and DCMA (dichloran chloramphenicol malt extract agar) media, after which the number of colony-forming units per gram was determined in each group. In addition, fungal morphology after irradiation was analyzed by scanning electron microscopy (SEM). The results showed that ionizing radiation at a dose of 5 kGy was effective in reducing the growth of A. alternata. However, a dose of 10 kGy was necessary to inhibit fungal growth completely. SEM made it possible to visualize structural alterations induced by the different gamma-radiation doses used. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Southwest region of the Bahia state in Brazil hosts the largest uranium reserve of the country (100 kton in uranium, only), plus the cities of Caetite, Lagoa Real and Igapora. In this work, aim was at the investigation of uranium burdens on residents of these cities by using teeth as bioindicators, as a contribution for possible radiation protection measures. Thus, a total of 41 human teeth were collected, plus 50 from an allegedly uranium free area (the control region). Concentrations of uranium in teeth from residents of 5- to 87-y old were determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). The highest uranium concentration in teeth was measured from samples belonging to residents of Caetite (median equal to 16 ppb). Assuming that the uranium concentrations in teeth and bones are similar within 10-20% (for children and young adults), it concluded that uranium body levels in residents of Caetite are at least one order of magnitude higher than the worldwide average. This finding led to conclude that daily ingestion of uranium, from food and water, is equally high.
Resumo:
In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.
Resumo:
A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.
Resumo:
Some dosimetric properties of watch glasses were studied applying the thermoluminescence technique. The watch glass samples were powdered, and the selected grains were mixed with Teflon (TM). The mixture was pressed and sintered to produce pellets of watch glass-Teflon (TM) composites. The glow curves of the pellets show two peaks at 130 and 195 degrees C. Reproducibility of TL response was estimated to have a maximum coefficient of variation of 4.0%. The dose-response curve is sublinear between 0.5 and 20.0kGy. The calibration curve is linear between 1.0Gy and 1.0kGy. The minimum detection limits were also determined. The gamma radiation dose response and the thermal stability of the materials were studied with the purpose to establish the best conditions of watch glasses for use in gamma radiation dosimetry. (C) 2007 Elsevier Ltd. All rights reserved.