37 resultados para random regression model
Resumo:
Kidney transplantation improves the quality of life of end-stage renal disease patients. The quality of life benefits, however, pertain to patients on average, not to all transplant recipients. The aim of this study was to identify factors associated with health-related quality of life after kidney transplantation. Population-based study with a cross-sectional design was carried out and quality of life was assessed by SF-36 Health Survey Version 1. A multivariate linear regression model was constructed with sociodemographic, clinical and laboratory data as independent variables. Two hundred and seventy-two kidney recipients with a functioning graft were analyzed. Hypertension, diabetes, higher serum creatinine and lower hematocrit were independently and significantly associated with lower scores for the SF-36 oblique physical component summary (PCSc). The final regression model explained 11% of the PCSc variance. The scores of oblique mental component summary (MCSc) were worse for females, patients with a lower income, unemployed and patients with a higher serum creatinine. The regression model explained 9% of the MCSc variance. Among the studied variables, comorbidity and graft function were the main factors associated with the PCSc, and sociodemographic variables and graft function were the main determinants of MCSc. Despite comprehensive, the final regression models explained only a little part of the heath-related quality of life variance. Additional factors, such as personal, environmental and clinical ones might influence quality of life perceived by the patients after kidney transplantation.
Resumo:
We consider independent edge percolation models on Z, with edge occupation probabilities. We prove that oriented percolation occurs when beta > 1 provided p is chosen sufficiently close to 1, answering a question posed in Newman and Schulman (Commun. Math. Phys. 104: 547, 1986). The proof is based on multi-scale analysis.
Resumo:
In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this article, we deal with the issue of performing accurate small-sample inference in the Birnbaum-Saunders regression model, which can be useful for modeling lifetime or reliability data. We derive a Bartlett-type correction for the score test and numerically compare the corrected test with the usual score test and some other competitors.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio test tends to be liberal when the sample size is small. We obtain a correction factor which reduces the size distortion of the test. Also, we consider a parametric bootstrap scheme to obtain improved critical values and improved p-values for the likelihood ratio test. The numerical results show that the modified tests are more reliable in finite samples than the usual likelihood ratio test. We also present an empirical application. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Interethnic admixture is a source of cryptic population structure that may lead to spurious genotype-phenotype associations in pharmacogenomic studies. We studied the impact of population stratification on the distribution of ABCB1 polymorphisms (1236C > T, 2677G > T/A and 3435C > T) among Brazilians, a highly admixed population with Amerindian, European and African ancestral roots. Methods: Individual DNA from 320 healthy adults was genotyped with a panel of ancestry informative markers, and the proportions of African component of ancestry (ACA) were estimated. ABCB1 genotypes were determined by the single base extension/termination method. We describe the association between ABCB1 polymorphisms and ACA by fitting a linear proportional odds logistic regression model to the data. Results: The distribution of the ABCB1 2677G > T/A and 3435C > T, but not the 1236C > T, SNPs displayed a significant trend for decreasing frequency of the T alleles and TT genotypes from White to Intermediate to Black individuals. The same trend was observed in the frequency of the T/nonG/T haplotype at the 1236, 2677 and 3435 loci. When the population sample was proportioned in quartiles, according to the individual ACA estimates, the frequency of the T allele and TT genotype at each locus declined progressively from the lowest (< 0.25 ACA) to the highest (> 0.75 ACA) quartile. Linear proportional odds logistic regression analysis confirmed that the odds of having the T allele at each locus decreases in a continuous manner with the increase of the ACA, throughout the ACA range (0.13-0.94) observed in the overall population sample. A significant association was also detected between the individual ACA estimates and the presence of the T/nonG/T haplotype in the overall population. Conclusion: Self-identification according to the racial/color categories proposed by the Brazilian Census is insufficient to properly control for population stratification in pharmacogenomic studies of ABCB1.
Resumo:
A dosing algorithm including genetic (VKORC1 and CYP2C9 genotypes) and nongenetic factors (age, weight, therapeutic indication, and cotreatment with amiodarone or simvastatin) explained 51% of the variance in stable weekly warfarin doses in 390 patients attending an anticoagulant clinic in a Brazilian public hospital. The VKORC1 3673G>A genotype was the most important predictor of warfarin dose, with a partial R(2) value of 23.9%. Replacing the VKORC1 3673G>A genotype with VKORC1 diplotype did not increase the algorithm`s predictive power. We suggest that three other single-nucleotide polymorphisms (SNPs) (5808T>G, 6853G>C, and 9041G>A) that are in strong linkage disequilibrium (LD) with 3673G>A would be equally good predictors of the warfarin dose requirement. The algorithm`s predictive power was similar across the self-identified ""race/color"" subsets. ""Race/color"" was not associated with stable warfarin dose in the multiple regression model, although the required warfarin dose was significantly lower (P = 0.006) in white (29 +/- 13 mg/week, n = 196) than in black patients (35 +/- 15 mg/week, n = 76).