242 resultados para primary motor cortex


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance. (C) 2007 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction. A fundamental aspect of planning future actions is the performance and control of motor tasks. This behaviour is done through sensory-motor integration. Aim. To explain the electrophysiological mechanisms in the cortex (modifications to the alpha band) that are involved in anticipatory actions when individuals have to catch a free-falling object. Subjects and methods. The sample was made up of 20 healthy subjects of both sexes (11 males and 9 females) with ages ranging between 25 and 40 years (32.5 +/- 7.5) who were free of mental or physical diseases (previous medical history); the subjects were right-handed (Edinburgh Inventory) and were not taking any psychoactive or psychotropic substances at the time of the study. The experiment consisted in a task in which subjects had to catch freely falling objects. The experiment was made up of six blocks of 15 tests, each of which lasted 2 minutes and 30 seconds before and two seconds after each ball was dropped. Results. An interaction of the factors moment and position was only observed for the right parietooccipital cortex, in the combination of electrodes P4-O2. Conclusion. These findings suggest that the right parietooccipital cortex plays an important role in increasing expectation and swiftness in the process of preparing for a motor task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth in thickness of monocotyledon stems can be either primary, or primary and secondary. Most of the authors consider this thickening as a result of the PTM (Primary Thickening Meristem) and the STM (Secondary Thickening Meristem) activity. There are differences in the interpretation of which meristem would be responsible for primary thickening. In Cordyline fruticosa the procambium forms two types of vascular bundles: collateral leaf traces (with proto and metaxylem and proto and metaphloem), and concentric cauline bundles (with metaxylem and metaphloem). The procambium also forms the pericycle, the outermost layer of the vascular cylinder consisting of smaller and less intensely colored cells that are divided irregularly to form new vascular bundles. The pericycle continues the procambial activity, but only produces concentric cauline bundles. It was possible to conclude that the pericycle is responsible for the primary thickening of this species. Further away from the apex, the pericyclic cells undergo periclinal divisions and produce a meristematic layer: the secondary thickening meristem. The analysis of serial sections shows that the pericycle and STM are continuous in this species, and it is clear that the STM originates in the pericycle.The endodermis is acknowledged only as the innermost layer of the cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A role for the occipital or retrosplenial cortex in nociceptive processing has not been demonstrated yet, but connections from these cortices to brain structures involved in descending pain-inhibitory mechanisms were already demonstrated. This study demonstrated that the electrical stimulation of the occipital or retrosplenial cortex produces antinociception in the rat tail-flick and formalin tests. Bilateral lesions of the dorsolateral funiculus abolished the effect of cortical stimulation in the tail-flick test. Injection of glutamate into the same targets was also antinociceptive in the tail-flick test. No rats stimulated in the occipital or retrosplenial cortex showed any change in motor performance on the Rota-rod test, or had epileptiform changes in the EEG recording during or up to 3 hours after stimulation. The antinociception induced by occipital cortex stimulation persisted after neural block of the retrosplenial cortex. The effect of retrosplenial cortex stimulation also persisted after neural block of the occipital cortex. We conclude that stimulation of the occipital or retrosplenial cortex in rats leads to antinociception activating distinct descending pain-inhibitory mechanisms, and this is unlikely to result from a reduced motor performance or a postictal phenomenon. Perspective: This study presents evidence that stimulation of the retrosplenial or occipital cortex produces antinociception in rat models of acute pain. These findings enhance our understanding of the role of the cerebral cortex in control of pain. (C) 2010 by the American Pain Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms underlying the effects of antidepressant treatment in patients with Parkinson`s disease (PD) are unclear. The neural changes after successful therapy investigated by neuroimaging methods can give insights into the mechanisms of action related to a specific treatment choice. To study the mechanisms of neural modulation of repetitive transcranial magnetic Stimulation (rTMS) and fluoxetine, 21 PD depressed patients were randomized into only two active treatment groups for 4 wk: active rTMS over left dorsolateral prefrontal cortex (DLPFC) (5 Hz rTMS; 120% motor threshold) with placebo pill and sham rTMS with fluoxetine 20mg/d. Event-related functional magnetic resonance imaging (fMRI) with emotional stimuli was performed before and after treatment - in two sessions (test and re-test) at each time-point. The two groups of treatment had a significant, similar mood improvement. After rTMS treatment, there were brain activity decreases in left fusiform gyrus, cerebellum and right DLPFC and brain activity increases in left DLPFC and anterior cingulate gyrus compared to baseline. In contrast, after fluoxetine treatment, there were brain activity increases in right premotor and right medial prefrontal cortex. There was a significant interaction effect between groups vs. time in the left medial prefrontal cortex, suggesting that the activity in this area changed differently in the two treatment groups. Our findings show that antidepressant effects of rTMS and fluoxetine in PD are associated with changes in different areas of the depression-related neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Previous works showed potentially beneficial effects of a single session of peripheral nerve sensory stimulation (PSS) on motor function of a paretic hand in patients with subacute and chronic stroke. Objective. To investigate the influence of the use of different stimulus intensities over multiple sessions (repetitive PSS [RPSS]) paired with motor training. Methods. To address this question, 22 patients were randomized within the second month after a single hemispheric stroke in a parallel design to application of 2-hour RPSS at 1 of 2 stimulus intensities immediately preceding motor training, 3 times a week, for 1 month. Jebsen-Taylor test (JTT, primary endpoint measure), pinch force, Functional Independence Measure (FIM), and corticomotor excitability to transcranial magnetic stimulation were measured before and after the end of the treatment month. JTT, FIM scores, and pinch force were reevaluated 2 to 3 months after the end of the treatment. Results. Baseline motor function tests were comparable across the 2 RPSS intensity groups. JTT improved significantly in the lower intensity RPSS group but not in the higher intensity RPSS group at month 1. This difference between the 2 groups reduced by months 2 to 3. Conclusions. These results indicate that multiple sessions of RPSS could facilitate training effects on motor function after subacute stroke depending on the intensity of stimulation. It is proposed that careful dose-response studies are needed to optimize parameters of RPSS stimulation before designing costly, larger, double-blind, multicenter clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substance-dependence is highly associated with executive cognitive function (ECF) impairments. However. considering that it is difficult to assess ECF clinically, the aim of the present study was to examine the feasibility of a brief neuropsychological tool (the Frontal Assessment Battery FAB) to detect specific ECF impairments in a sample of substance-dependent individuals (SDI). Sixty-two subjects participated in this study. Thirty DSM-IV-diagnosed SDI, after 2 weeks of abstinence, and 32 healthy individuals (control group) were evaluated with FAD and other ECF-related tasks: digits forward (DF), digits backward (DB), Stroop Color Word Test (SCWT), and Wisconsin Card Sorting Test (WCST). SDI did not differ from the control group on sociodemographic variables or IQ. However, SDI performed below the controls in OF, DB, and FAB. The SDI were cognitively impaired in 3 of the 6 cognitive domains assessed by the FAB: abstract reasoning, motor programming, and cognitive flexibility. The FAB correlated with DF, SCWT, and WCST. In addition, some neuropsychological measures were correlated with the amount of alcohol, cannabis, and cocaine use. In conclusion, SDI performed more poorly than the comparison group on the FAB and the FAB`s results were associated with other ECF-related tasks. The results suggested a negative impact of alcohol, cannabis, and cocaine use on the ECF. The FAB may be useful in assisting professionals as an instrument to screen for ECF-related deficits in SDI. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our study aims to investigate changes in electrocortical activity by observing the variations in absolute theta power in the primary somatomotor and parietal regions of the brain under three different electrical stimulation conditions: control group (without stimulation), group 24 (24 trials of stimulation) and group 36 (36 trials of stimulation). Thus, our hypothesis is that the application of different patterns of electrical stimulation will promote different states of habituation in these regions. The sample was composed of 24 healthy (absence of mental and physical impairments) students (14 male and 10 female), with ages varying from 25 to 40 years old (32.5 +/- 7.5), who are right-handed (Edinburgh Inventory). The subjects were randomly distributed into three groups: control (n = 8), G24 (n = 8) and G36 (n = 8). We use the Functional electrical stimulation (FES) equipment (NeuroCompact-2462) to stimulate the right index finger extensor muscle, while the electroencephalographic signal was simultaneously recorded. We found an interaction between condition and block factors for the C3 and P3 electrode, a condition and block main effects for the C4 electrode, and a condition main effect for the P4 electrode. Our results support the hypothesis that electrical stimulation promotes neurophysiological changes. It appears that stimulus adaptation (accommodation) of specific circuits can strengthen the brain`s ability to distinguish between and respond to such stimuli over time. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. To investigate the effects of using bromazepam on the relative power in alpha while performing a typing task. Bearing in mind the particularities of each brain hemisphere, our hypothesis was that measuring the relative power would allow its to investigate the effects of bromazepam oil specific areas of the cortex. More, specifically, we expected to observe different patterns of powers in sensory-motor integration, attention and activation processes. Subjects and methods. The sample was made up of 39 subjects (15 males and 24 females) with a mean age of 30 +/- 10 years. The control (placebo) and experimental (3 mg and 6 mg of bromazepam) groups were trained ill the typing task with a randomised double-blind model. Results. A three-way ANOVA and Scheffe test were used to analyse interactions between the factors condition and moment, and between condition and sector Conclusions. The doses used ill this study facilitated motor performance of the typing task. Ill this study, the use of the drug did not prevent learning of the task, but it did appear to concentrate mental effort on more restricted and specific aspects of typing. It also seemed to influence the rhythm and effectiveness of the operations performed during mechanisms related to the encoding and storage often, information. Likewise, a predominance of activity was observed in the left (dominant) frontal area in the 3 mg bromazepam group, which indicates that this close of the drug affords the subject a greater degree of directionality of cortical activity for planning and performing the task. [REV NEUROL 2009; 49: 295-9]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the influence of bromazepam on EEG and the motor learning process when healthy subjects were submitted to a typewriting task. We investigated bromazepam due to its abuse by various populations and its prevalent clinical use among older individuals which are more sensitive to the negative effects of long half-life benzodiazepines. A randomized double-blind design was used with subjects divided into three groups: placebo (n = 13), bromazepam 3 mg (n = 13) and bromazepam 6 mg (n = 13). EEG data comprising theta, alpha and beta bands was recorded before, during and after the motor task. Our results showed a lower relative power value in the theta band in the Br 6 mg group when compared with PL. We also observed a reduction in relative power in the beta band in the Br 3 mg and Br 6 mg when compared with PL group. These findings suggest that Br can contribute to a reduced working memory load in areas related to attention processes. On the other hand, it produces a higher cortical activation in areas associated with sensory integration. Such areas are responsible for accomplishing the motor learning task. The results are an example of the usefulness of integrating electrophysiological data, sensorimotor activity and a pharmacological approach to aid in our understanding of cerebral changes produced by external agents. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single-center experience with pediatric patients who underwent surgery for intractable rolandic epilepsy was reviewed with the aim of identifying putative factors that could influence postoperative seizure outcome in this population. Clinical data of 48 patients under 18 years of age with diagnosis of intractable rolandic epilepsy who underwent surgery from January 1996 to September 2009 were reviewed. Patients` mean age at surgery was 9.9 +/- 5.3 years; mean age at epilepsy onset was 3.9 years; mean seizure duration prior to surgery was 6 years; and mean follow-up was 5.1 years. The most frequent etiologies were cortical dysplasia, astrogliosis, tumors, tuberous sclerosis complex, and Sturge-Weber syndrome, which were observed in 20/48 (41.6%), 10/48 (20.8%), 10/48 (20.8%), 5/48 (10.4%), and 3/48 (6.2%) of the patients, respectively. After surgery, 20 patients (41.6%) showed neurological deficits, which in turn recovered within no longer than 6 months after surgery. Seizure outcome was classified as Engel class I in 29 (60.4%), Engel class II in 10 (20.8%), and Engel class III in 9 (18.8%) of the patients. The factors significantly related with seizure outcome were histological features (tumor versus non-tumor cases, p = 0.04) and lesion site (focal lesions versus non-focal lesions, p = 0.04). Tailored resection of rolandic cortex for intractable epilepsy can be safely performed in children. Accurate mapping of both functional cortex and epileptogenic areas may lead to improved seizure outcome. Tumor as well as focal lesions in hand and face motor areas are associated with good seizure outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effects of motor stimulation via treadmill on the behavior of male gerbils after external carotid ischemic brain lesion. The animals were assigned to five groups; ischemic with no stimulation (SIG), ischemic with stimulation (SIG 12/24/48/72 It after surgery), non-ischemic with no stimulation (CC), non-ischemic with stimulation (CE) and sham, surgery without occlusion with no stimulation (SH). All the animals were tested in the open-field (OF) and rotarod (RR), 4 days after surgery in order to evaluate exploratory behaviors and motor performance. Data were submitted to one-way variance (ANOVA) and Dunnett`s post hoc comparisons. SIG and SIG 12 groups showed a significant decrease in motor response (crossing) when compared to the control group (CC) (F = 20.65, P < 0.05) in the OF. SIG 12 group showed an increase in grooming behavior (F = 23.136, P < 0.05) and all ischemia groups (SIG, SIG 12/24/48/72) spent less time on the RR (F = 10.40, P < 0.05), when compared to the control group (CC). Histological analyses show extensive lesions in the hippocampus and neostriatum for all groups with ischemia (SIG, SIG 12/24/48/72), which are structures involved in the organization of motor behavior. Interestingly, the most pronounced damage was found in animals submitted to motor stimulation 12 h after ischemia which can be correlated to the increased number of grooming behavior showed by them in the OF. These findings suggest that motor stimulation through treadmill training improve motor behavior after ischemia, except when it starts 12h after surgery. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects. However, a possible involvement of TRPV1 is still unclear. In the present study, we tested the hypothesis that TRPV1 channel contributes to the modulation of anxiety-like behavior in the mPFC. Male Wistar rats (n = 5-7 per group) received microinjections of the TRPV1 antagonist capsazepine (1-60 nmol) in the ventral portion of the mPFC and were exposed to the elevated plus maze (EPM) or to the Vogel conflict test. Capsazepine increased exploration of open arms in the EPM as well as the number of punished licks in the Vogel conflict test, suggesting anxiolytic-like effects. No changes in the number of entries into the enclosed arms were observed in the EPM, indicating that there were no changes in motor activity. Moreover, capsazepine did not interfere with water consumption or nociceptive threshold, discarding potential confounding factors for the Vogel conflict test. These data suggest that TRPV1 in the ventral mPFC tonically inhibits anxiety-like behavior. TRPV1 could facilitate defensive responses opposing, therefore, the anxiolytic-like effects reported after local activation of CB1 receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have shown that deficits in olfactory and cognitive functions precede the classical motor symptoms seen in Parkinson`s disease (PD) and that olfactory testing may contribute to the early diagnosis of this disorder. Although the primary cause of PD is still unknown, epidemiological studies have revealed that its incidence is increased in consequence of exposure to certain environmental toxins. In this study, most of the impairments presented by C57BL/6 mice infused with a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (1 mg/nostril) were similar to those observed during the early phase of PD, when a moderate loss of nigral dopamine neurons results in olfactory and memory deficits with no major motor impairments. Such infusion decreased the levels of the enzyme tyrosine hydroxylase in the olfactory bulb, striatum, and substantia nigra by means of apoptotic mechanisms, reducing dopamine concentration in different brain structures such as olfactory bulb, striatum, and prefrontal cortex, but not in the hippocampus. These findings reinforce the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD. These results also provide new insights in experimental models of PD, indicating that the i.n. administration of MPTP represents a valuable mouse model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.