70 resultados para orbit
Resumo:
We present a study of scattering of massless planar scalar waves by a charged nonrotating black hole. Partial wave methods are applied to compute scattering and absorption cross sections, for a range of incident wavelengths. We compare our numerical results with semiclassical approximations from a geodesic analysis, and find excellent agreement. The glory in the backward direction is studied, and its properties are shown to be related to the properties of the photon orbit. The effects of the black hole charge upon scattering and absorption are examined in detail. As the charge of the black hole is increased, we find that the absorption cross section decreases, and the angular width of the interference fringes of the scattering cross section at large angles increases. In particular, the glory spot in the backward direction becomes wider. We interpret these effects under the light of our geodesic analysis.
Resumo:
The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
We study polar actions with horizontal sections on the total space of certain principal bundles G/K -> G/H with base a symmetric space of compact type. We classify such actions up to orbit equivalence in many cases. In particular, we exhibit examples of hyperpolar actions with cohomogeneity greater than one on locally irreducible homogeneous spaces with nonnegative curvature which are not homeomorphic to symmetric spaces.
Resumo:
The doubly positively charged gas-phase molecules BrO(2+) and NBr(2+) have been produced by prolonged high-current energetic oxygen (17 keV (16)O(-)) ion surface bombardment (ion beam sputtering) of rubidium bromide (RbBr) and of ammonium bromide (NH(4)Br) powdered ionic salt samples, respectively, pressed into indium foil. These novel species were observed at half-integer m/z values in positive ion mass spectra for ion flight times of roughly similar to 12 mu s through a magnetic-sector secondary ion mass spectrometer. Here we present these experimental results and combine them with a detailed theoretical investigation using high level ab initio calculations of the ground states of BrO(2+) and NBr(2+), and a manifold of excited electronic states. NBr(2+) and BrO(2+), in their ground states, are long-lived metastable gas-phase molecules with well depths of 2.73 x 10(4) cm(-1) (3.38 eV) and 1.62 x 10(4) cm(-1) (2.01 eV); their fragmentation channels into two monocations lie 2.31 x 10(3) cm(-1) (0.29 eV) and 2.14 x 10(4) cm(-1) (2.65 eV) below the ground state minimum. The calculated lifetimes for NBr(2+) (v '' < 35) and BrO(2+) (v '' < 18) are large enough to be considered stable against tunneling. For NBr(2+), we predicted R(e) = 3.051 a(0) and omega(e) = 984 cm(-1); for BrO(2+), we obtained 3.033 a(0) and 916 cm(-1), respectively. The adiabatic double ionization energies of BrO and NBr to form metastable BrO(2+) and NBr(2+) are calculated to be 30.73 and 29.08 eV, respectively. The effect of spin-orbit interactions on the low-lying (Lambda + S) states is also discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562121]
Resumo:
The low-lying doublet and quartet electronic states of the species SeF correlating with the first dissociation channel are investigated theoretically at a high-level of electronic correlation treatment, namely, the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) using a quintuple-zeta quality basis set including a relativistic effective core potential for the selenium atom. Potential energy curves for (Lambda+S) states and the corresponding spectroscopic properties are derived that allows for an unambiguous assignment of the only spectrum known experimentally as due to a spin-forbidden X (2)Pi-a (4)Sigma(-) transition, and not a A (2)Pi-X (2)Pi transition as assumed so far. For the bound excited doublets, yet unknown experimentally, this study is the first theoretical characterization of their spectroscopic properties. Also the spin-orbit coupling constant function for the X (2)Pi state is derived as well as the spin-orbit coupling matrix element between the X (2)Pi and a (4)Sigma(-) states. Dipole moment functions and vibrationally averaged dipole moments show SeF to be a very polar species. An overview of the lowest-lying spin-orbit (Omega) states completes this description. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3426315]
Resumo:
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615545]
Resumo:
Detailed description of the cranial anatomy of the rhynchosaur previously known as Scaphonyx sulcognathus allows its assignment to a new genus Teyumbaita. Two nearly complete skulls and a partial skull have been referred to the taxon, all of which come from the lower part of the Caturrita Formation, Upper Triassic of Rio Grande do Sul, southern Brazil. Cranial autapomorphies of Teyumbaita sulcognathus include anterior margin of nasal concave at midline, prefrontal separated from the ascending process of the maxilla, palatal ramus of pterygoid expanded laterally within palatines, dorsal surface of exoccipital markedly depressed, a single tooth lingually displaced from the main medial tooth-bearing area of the maxilla, and a number of other characters (such as skull broader than long; a protruding orbital anterior margin; anguli oils extending to anterior ramus of the jugal; bar between the orbit and the lower temporal fenestra wider than 0.4 of the total orbital opening; mandibular depth reaching more than 25% of the total length) support its inclusion in Hyperodapedontinae. T. sulcognathus is the only potential Norian rhynchosaur, suggesting that the group survived the end-Carnian extinction event.
Resumo:
Anterior ethmoidal artery (AEA) ligation may be necessary in cases of severe epistaxis not controllable with traditional therapy. Endoscopic endonasal ligation of the AEA is not used frequently; there are few studies in the literature for standardization of the endoscopic technique for this vessel. Aim: To demonstrate the feasibility of periorbital AEA ligation in a transethmoidal endoscopic approach. Methods: A prospective study where 50 nasal cavities were dissected. After anterior ethmoidectomy and partial removal of lamina papyracea, the periorbital area was carefully dissected along a subperiosteal plane to identify the AEA. The vessel was exposed within the orbit and dissected. Results: Data on technical difficulties, complications, the learning curve and anatomical variations were gathered. Conclusion: An endonasal endoscopic approach to the AEA within the orbit was shown to be feasible. Identifying the artery is not difficult, and this technique avoids external incisions. This approach appears to be an excellent alternative for approaching the AEA. Further clinical studies are needed to demonstarte the benefits of this technique.
Resumo:
Purpose: Because of the controversial biologic tolerance and management, retained intraorbital metallic foreign body (RIMFb) poses a formidable challenge to surgeons. Besides location of the foreign body, indications for surgical management include neurologic injury, mechanical restriction of the eye movement, and development of local infection or draining fistula. The authors describe an unusual case of spontaneous migration of a RIMFb. Methods: A 26-year-old man had a gunshot injury on the left orbit. The patient was initially managed conservatively because of the posterior position of the bullet fragment. Thereafter, because of the clinical impairments and anterior migration of projectile, surgical treatment was considered. Results: Spontaneous anterior migration has led to mechanical disturbances and inflammatory complications that comprise explicit surgical indications for removal. The patient underwent surgery with complete relief of symptoms. We suppose that extrinsic ocular muscles might play a role in shifting large RIMFb over time, leading to change in the management strategies. Conclusions: Spontaneous migration of RIMFb is a rare clinical situation that can lead to pain, local deformity, as well as changes in the management strategies of the affected patients even in the late phase of follow-up.
Resumo:
Purpose: To evaluate the use of orbital polyacrylamide gel injection for the correction of anophthalmic enophthalmos. Methods: Noncontrolled clinical trial of 21 patients (14 with ocular implants, 5 with phthisis bulbi, and 2 with dermis-fat graft). Orbital CT was performed to estimate the volume of polyacrylamide gel needed to restore orbital volume. Polyacrylamide gel was injected using a 22-gauge (30 x 0.7 min) needle transcutaneously inserted in the lateral third of the lower eyelid, directed to the orbital muscle cone. A second injection was administered 15 days later. if necessary. CT was repeated 30 days after the last procedure. Exophthalmometry was performed before Bind 90 days after file procedure. Results: The mean total volume injected per orbit was 2.4 +/- 0.7 ml (range 1-3.5 ml). The volume of the enophthalmic orbit increased front 26.9 +/- 5.0 ml to 29.3 +/- 4.9 ml (p < 0.001). The mean difference in exophthalmometry readings was 3.3 +/- 1.6 mm (range, 1.5-8.0 mm) before the procedure and 1.0 +/- 0.9 mm (range, 0.0-3.0 mm) after 3 months (p < 0.001). Adjustment of the ocular prosthesis or fabrication of a new one was necessary in 11 patients (52.4%), and the mean volume of the ocular prosthesis was reduced front 2.0 +/- 0.6 ml to 1.6 +/- 0.6 ml (p = 0.003). All patients were satisfied with the aesthetic results. No serious adverse events were observed. The initial results were maintained 1 year after the procedure. Conclusions: Polyacrylamide gel injection in the orbital space effectively reduces enophthalmos in ocular prosthesis wearers.
Resumo:
Purpose: To describe the clinical and radiologic features of orbital involvement in craniofacial brown tumors and to compare the rate of brown tumors in primary and secondary hyperparathyroidism. Methods: A retrospective hospital-based study of 115 patients with chronic kidney disease and secondary hyperparathyroidism and 34 with primary hyperparathyroidism was conducted. Laboratory results such as serum levels of alkaline phosphatase, calcium, phosphorus, and parathyroid hormone were recorded. Demographic data (age, sex, duration of disease) and image findings (bone scan scintigraphy, skull and long bone x-rays, CT) were also obtained. The main outcome measures were analysis of clinical, biochemical, and radiologic findings of all patients. Results: Of the 115 patients with chronic kidney disease, 10 (8.7%) had brown tumors in different bones of the skeleton. Five patients had lesions in the craniofacial bones. The maxilla, mandible, maxillary sinus, and nasal cavity were the most affected sites. The orbit was involved in 2 patients with lesions arising in the maxillary and ethmoid sinuses. One patient had facial leontiasis. All patients with brown tumors had extremely high levels of parathyroid hormone (>1,000 pg/ml, normal values 10-69 pg/ml) and alkaline phosphatase (>400 U/l, normal values 65-300 U/l). The mean serum levels of phosphorus and calcium were not abnormal among the patients with brown tumors. Age and time of renal failure were similar for patients with and without brown tumors. Among the patients with primary hyperparathyroidism, only 2 (5.8%) had brown tumors, and in just 1, the lesion was localized in the craniofacial skeleton. A 2-tailed Z test applied to compare the proportion of occurrence of brown tumors in the 2 groups revealed that the difference at the 90% of confidence level was not significant. Conclusions: Brown tumors are equally found in secondary and primary hyperparathyroidism. Craniofacial brown tumors involve the orbit, usually because of the osteodystrophy process that involves the maxilla and paranasal sinuses. The lesions do not necessarily need to be excised and may regress spontaneously after the control of hyperparathyroidism.
Resumo:
Purpose: To describe the clinical and radiologic features of 4 cases of ossifying fibroma affecting the orbit and to review the literature on orbital involvement by the tumor. Methods: Small case series. Results: Four patients (3 children and 1 adult) with ossifying fibromas invading the orbit were examined. Two of the 3 children were examined for ossifying fibromas on the orbital roof. One had the psammomatoid form of the disease and the other the trabecular variant. Despite striking differences in the histologic pattern and in the radiologic appearance of the lesions, both children displayed a significant degree of orbital inflammation mimicking orbital cellulitis. The third child and the adult patient had the orbit involved by trabecular ossifying fibromas invading the orbital floor. The tumor of the adult clearly originated in the maxilla, filled the maxillary sinus, and eroded the orbital floor. The tumor of the third child occupied the maxillary, ethmoid, and sphenoid sinuses. In both cases, the clinical presentation was painless eye dystopia and proptosis. Conclusions: Regardless of the histologic pattern (trabecular or psammomatoid), ossifying fibromas can induce a substantial degree of orbital inflammation in children and must be included in the differential diagnosis of acute orbital inflammation during childhood.
Resumo:
This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
Resumo:
The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, similar to 20 per cent are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analysed the He II lambda 4686 angstrom + C IV lambda 4658 angstrom blended lines of WR 30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6-d period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.