40 resultados para oil spill
Resumo:
The chemical composition of essential oils obtained from fresh leaves and stem bark of Southeastern Brazilian native Drimys brasiliensis Miers were analyzed by GC and GC/MS and 37 compounds were identified. The oils from fresh leaves showed the presence of monoterpenes (53.9%) and sesquiterpenes (38.4%), with sabinene (9.5%), myrcene (10.5%), limonene (10.6%) and cyclocolorenone (16.0%) being the most abundant. The stern bark oil was characterized by predominance of sesquiterpenoids (87.6%) and the absence of monoterpenes, the main components being cyclocolorenone (28.3%) and spathuleneol (22.9%). A small amount of phenylpropanes (6.8-6.9%) was also detected in both oil samples.
Resumo:
The essential oil from leaves of Guarea guidonia was subjected to chromatographic separation procedures to afford nine sesquiterpenes; two of them are new eudesmane derivatives. The chemical structures of the obtained compounds were characterised by spectrometric analysis, mainly mass spectrometry and NMR.
Resumo:
The chemical composition and the antimicrobial activity of the essential oil from Croton heterocalyx leaves were evaluated. The oil which was analyzed by GC and GUMS was found to contain germacrene D (12.5%), bicyclogermacrene (11.2%), delta-elemene (9.2%) beta-elemene (8.2%), spathulenol (6.9%), linalool (5.4%) and 1,8-cineole (3.7%) its major components. Croton. heterocalyx oil displayed a high inhibitory activity against the fungi Aspergillus niger (16404) and Candida albicans (ATCC 10231.) as well its the Gram-positive bacterium Staphylococcus aureus (ATCC 6538), hut a very weak activity was observed for the Gram-negative bacteria Escherichia coli (ATCC 8739) and Pseudomonas aeruginosa (ATCC 9027).
Resumo:
The catalytic ethanolysis of soybean oil with commercial immobilized lipase type B from Candida antarctica to yield ethyl esters (biodiesel) has been investigated. Transesterification was monitored with respect to the following parameters: quantity of biocatalyst, reaction time, amount of water added and turnover of lipase. The highest yields of biodiesel (87% by (1)H NMR; 82.9% by GC) were obtained after a reaction time of 24 h at 32 degrees C in the presence of lipase equivalent to 5.0% (w/w) of the amount of soybean oil present. The production of ethyl esters by enzymatic ethanolysis was not influenced by the addition of water up to 4.0% (v/v) of the alcohol indicating that it is possible to use hydrated ethanol in the production of biodiesel catalyzed by lipase. The immobilized enzyme showed high stability under moderate reaction conditions and retained its activity after five production cycles. The (1)H NMR methodology elaborated for the quantification of biodiesel in unpurified reaction mixtures showed good correlations between the signal areas of peaks associated with the alpha-methylene groups of the ethyl esters and those of the triacyl-glycerides in residual soybean oil. Monoacylglycerides, diacylglycerides and triglycerides could also be detected and quantified in the crude biodiesel using (1)H NMR spectroscopic and GC-FID chromatographic methods. The biodiesel production by enzymatic catalysis was promising. In this case, was produced a low concentration of glycerol (0.74%) and easily removed by water extraction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC(10)C(10) and the dirhamnolipid Rha(2)C(10)C(10) were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 mu g/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 mu g/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.
Resumo:
Many factors can affect the quality of diesel oil, in particular the degradation processes that are directly related to some organosulfur compounds. During the degradation process, these compounds are oxidized into their corresponding sulfonic acids, generating a strong acid content during the process. p-Toluene sulfonic acid analysis was performed using the linear sweep voltammetry technique with a platinum ultramicroelectrode in aqueous solution containing 3 mol L(-1) potassium chloride. An extraction step was introduced prior to the voltammetric detection in order to avoid the adsorption of organic molecules, which inhibit the electrochemical response. The extraction step promoted the transference of sulfonic acid from the diesel oil to an aqueous phase. The method was accurate and reproducible, with detection and quantification limits of 5 ppm and 15 ppm, respectively. Recovery of sulfonic acid was around 90%.
Resumo:
The essential oil from seeds of Licaria puchury-major was isolated by hydrodistillation. The chemical composition of the oil was analyzed by GC and GUMS. Sixteen compounds were identified, representing 91.4% of the total oil. The major components were safrole (58.4%), dodecanoic acid (13.7%) and alpha-terpineol (8.4%). Oxygenated monoterpenoids were the main group of compounds.
Resumo:
The study of Aloysia gratissima essential oil from leaves was obtained by hydrodistillation using a Clevenger type apparatus. The essential oil composition was analyzed by GC and GC/MS. The major compounds were identified representing 94.7% of the oil. The most abundant compounds were isopinocamphone (cis-3-pinanone) (25.4%), limonene (15.1%), and guaiol (12.7%).
Resumo:
Eugenol is the main volatile compound extracted oil from clove bud, Syzygium aromaticum L., and used in traditional medicine, as a bactericide, fungicide, anesthetic, and others. Its extraction was performed using hydrodistillation which is the most common extraction technique. Its components and thermal behavior were evaluated using gas chromatography (GC) and differential scanning calorimetry (DSC), which provide a better characterization of these natural compounds. This extracted product was compared to the standard eugenol results. The GC results suggested similar to 90% eugenol was found in the total extracted oil, and some of its boiling characteristics were 270.1 A degrees C for peak temperature and 244.1 J g(-1) for the enthalpy variation.
Resumo:
The present work had as objective the isolation of the five compounds by thin-layer Chromatography (TLC) from the essential oil of the Aloysia gratissima. For this, a number of systems of eluents were used for its separation, indicating that through the system acetone/hexane in proportions (v/v) 1:30 it was possible to isolate guaiol, elemol, pinocanphone (trans-3-pinanone), cis-pinocarvyl, and acorenone. The isolation of the compound acorenone from the other compounds was possible with the mixture of solvents hexane/dichloromethane in proportions (v/v) (1:1,3).