129 resultados para nickel complexes
Resumo:
Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.
Resumo:
Plant cell cultures are a suitable model system for investigation of the physiological mechanisms of tolerance to environmental stress. We have determined the effects of Cd (0.1 and 0.2 mM CdCl(2)) and Ni (0.075 and 0.75 mM NiCl(2)) on Nicotiana tabacum L. cv. Bright Yellow (TBY-2) cell suspension cultures over a 72-h period. Inhibition of growth, loss of cell viability and lipid peroxidation occurred, in general, only when the TBY-2 cells were grown at 0.2 mM CdCl(2) and at 0.75 mM NiCl(2). At 0.1 mM CdCl(2), a significant increase in growth was determined at the end of the experiment. Increases in the activities of all of the four enzymatic antioxidant defence systems tested, were induced by the two concentrations of Cd and Ni, but at different times during the period of metal exposure. Overall, the cellular antioxidant responses to Cd and Ni were similar and were apparently sufficient to avoid oxidative stress at the lower concentrations of Cd and Ni. The activities of glutathione reductase and glutathione S-transferase increased early but transiently, whereas the activities of catalase and guaiacol peroxidase increased in the latter half of the experimental period. Therefore it is likely that the metabolism of reduced glutathione was enhanced during the initial onset of the stress, while catalase and guaiacol-type peroxidase appeared to play a more important role in the antioxidant response once the stress became severe.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
The purpose of this study was to attain and characterize ternary complexes of simvastatin, beta-cyclodextrin (beta CD) and different polymers, and then select those that lead to a greater increase in drug solubility. The complexes were prepared with the co-evaporation method and the polymers used were polyethylene glycol 1500, polyethylene glycol 4000, povidone, copovidone, crospovidone, maltodextrin and hydroxypropyl methyl cellulose. The characterization of complexes was carried out through aqueous solubility, DSC and TG. There was an increase in solubility for all the complexes prepared with beta CD and the different polymers, but only when crospovidone and maltodextrin were used was there a significant difference observed between the solubility of the physical mixture and that of the complex. The DSC curves indicate that the non-complexed drug is even in the sample of the complex with higher solubility, thus none of the polymers was able to achieve a total complexation of the drug.
Resumo:
The aim of this study was to determine whether inclusion complexes between 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) and finasteride (FIN) are formed, and to characterize these. Equimolar FIN/HP beta CD solid systems in the presence or absence of 0.1% (w/v) of polyvinylpyrrolidone K30 (PVP K30) or 0.3% of chitosan were prepared by coevaporation and freeze-drying methods. The systems were characterized by phase solubility, NMR, DSC, and XRD analysis. The results suggest that true binary and ternary inclusion complexes were formed. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Obtention and Evaluation of Inclusion Complexes of Furosemide with beta-ciclodextrin and hidroxipropil-beta-ciclodextrin: Effects on Drug`s Dissolution Properties. The purpose of this study was to prepare, characterize and evaluate the dissolution behavior of inclusion complexes of furosemide with beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD). Solid complexes of furosemide with P-CD and-HP-beta-CD were prepared by using a freeze-drying method. Physical mixtures were prepared for comparison. The inclusion complexes were characterized by differential scanning calorimetry (DSC), Infrared (IR) and dissolution test. ""In vitro"" dissolutions assays were performed at pH 1,2; pH 4,5 and pH 6,8 media for a 60 min period. Statistical analysis employing ANOVA and Tukey`s Test, for the dissolution efficiency values (ED%), showed that complexation of furosemide with both cyclodextrins improved significantly ED% of the drug in all tested media, suggesting a minor pH influence on dissolution properties of the drug.
Resumo:
Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air-water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and kappa-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and kappa-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein-polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/kappa-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein-polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 angstrom resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 angstrom resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 angstrom resolution. Comparisons of these three hAPRT structures with other `type I` PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPR Comparative analyses presented here provide structural evidence to propose the role of Glu 104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.
Resumo:
Cyclodextrins (CDs) are annular oligosaccharides containing 6-12 glucose unities joined together by alpha-1,4 bonds. They have a conical-truncated shape with a lipophilic cavity in which different molecules can be included resulting in a stable inclusion complex. The cyclodextrins have been widely applied in pharmaceutical technology with the objective of increasing the solubility, stability and bioavailability of drugs in different pharmaceutical dosage forms, such as tablets. In order to obtain beta-CD tablets, liquid dispersions of drug/beta-CD are usually submitted to different drying processes, like spray-drying, freeze-drying or slow evaporation, being this dry material added to a number of excipients. However, such drying processes can generate particulate materials showing problems of flow and compressibility, needing their conversion into granulates by means of wetting with granulation liquid followed by additional drying. In this work, the main objective was to evaluate the preparation of tablets without the need of this additional drying step. For this purpose an aqueous dispersion containing acetaminophen/beta-CD complex and cornstarch was dried using a spouted bed and the obtained granules were compressed in tablets. Acetaminophen was used as model drug due to its low water solubility and the inexpensive and widely available cornstarch was chosen as excipient. Acetaminophen powder was added into a beta-cyclodextrin solution prepared in distilled water at 70 degrees C. Stirring was kept until this dispersion cooled to room temperature. Then cornstarch was added and the resulting dispersion was dried in spouted bed equipment. This material was compressed into tablets using an Erweka Korsh EKO tablet machine. This innovative approach allowed the tablets preparation process to be carried out with fewer steps and represents a technological reliable strategy to produce beta-cyclodextrin inclusion complexes tablets. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The novel asymmetric metallo-organic triads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}(Ru(bpy)(2)Cl}](PF(6))(2) (5a,b) for which cis- and trans-B(4-py)BPFPH(2)=5,10-bis(pentafluorophenyl)-15,20-bis(4-pyridyl)porphyrin and 5,15-bis(pentafluorophenyl)-10,20-bis(4-pyridyl)porphyrin, respectively; Ac = acetate; py = pyridine and bpy = 2,2`-bipyridine, as well as their corresponding monosubstituted dyads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}]PF(6) (4a,b) have been structurally characterized via electrospray ionization mass spectrometry (ESI-MS and ESI-MS/MS). The ESI-MS of dyads 4a,b display two characteristic Ru-multicomponent clusters of isotopologue ions corresponding to singly charged ions 4a,b(+) of m/z 1629 and doubly charged ions [4a,b+H](2+) of m/z 815 and the triads 5a,b are detected by ESI-MS as the intact doubly charged cluster of isotopologue ions of m/z 1039 [5a,b](2+). The ESI-MS/MS of 4a,b(+), [4a,b+H](2+) and [5a,b](2+) reveal characteristic dissociation pathways, which confirm the structural assignments providing additional information on the intrinsic binding strengths of the gaseous ions. Although the gas-phase behavior of each pair of isomers was rather similar, the less symmetric dyads 4a,b are distinguished via the (1)H NMR spectral profile of the pyrrolic signals. Exploratory photophysical assays have shown that both modifying motifs alter the porphyrinic core emission profile, opening the possibility to use these asymmetric systems as photophysical devices. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The photochemical behavior of nitrosyl complexes Ru(salen)(NO)(OH(2))(+) and Ru(salen)(NO) Cl (salen = N, N`-ethylenebis-(salicylideneiminato) dianion) in aqueous solution is described. Irradiation with light in the 350-450 nm range resulted in nitric oxide (NO) release from both. For Ru(salen)(NO) Cl secondary photoreactions also resulted in chloride aquation. Thus, in both cases the final photoproduct is the diaquo cation Ru(III) (salen) (OH(2))(2)(+), for which pK(a)`s of 5.9 and 9.1 were determined for the coordinated waters. The pK(a) of the Ru(salen)(NO)(OH(2))+ cation was also determined as 4.5 +/- 0.1, and the relative acidities of these ruthenium aquo units are discussed in the context of the bonding interactions between Ru(III) and NO. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The synthesis and structures of two new isostructural mononuclear [Ln(L)(NO(3))(H(2)O)(3)](NO(3))(2) complexes, with Ln = Tb (complex 1) and Eu (complex 2), which display high activity in the hydrolysis of the substrate 2,4-bis(dinitrophenyl)phosphate, are reported. These complexes displayed catalytic behavior similar to the mononuclear gadolinium complex [Gd(L)(NO(3))(H(2)O)(3)](NO(3))(2) previously reported by us (lnorg. Chem. 2008, 47, 2919-2921); one hydrolysis reaction in two stages where the diesterase and monoesterase activities could be monitored separately, with the first stage dependent on and the second independent of the complex concentration. Through potentiometric studies, electrospray ionization mass spectrometry (ESI-MS) analysis, and determination of the kinetic behaviors of 1 and 2 in acetonitrile/water solution, the species present in solution could be identified and suggested a dinuclear species, with one hydroxo group, as the most prominent catalyst under mild conditions. The complexes show high activity (k(1)= 7 and 18 s(-1) for 1 and 2, respectively) and catalytic efficiency. Complexes 1 and 2 were found to be active toward the cleavage of plasmid DNA, and complete kinetic studies were carried out. Studies with a radical scavenger (dimethylsulfoxide) confirmed the hydrolytic action of 1 and 2 in the cleavage of DNA. Studies on the incubation of distamycin with plasmid DNA suggested that 1 and 2 are regio-specific, interacting with the minor groove of DNA. These complexes displayed luminescent properties. Complex 1 showed higher emission intensity than 2 due to a more efficient energy transfer between triplet and emission levels of terbium (T -> (5)D(4)), along with nonradiative deactivation mechanisms of the excited states of europium via multiphonon decays and the ligand-to-metal charge transfer state. Lifetime measurements of the (5)D(4) and (5)D(0) excited levels for 1 and 2, respectively, indicated the numbers of coordinated water molecules for the complexes.
Resumo:
Three carbohydrate conjugated dipicolylamine chelators, 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)), 2-bis(2-pyridinylmethyl)amino)ethyl-beta-D-glucopyranoside (L(2)), and 2-bis(2-pyridinylmethyl)amino)carboxamide-N-(2-amino-2-deoxy-D-glucopyranose) (L(3)) were complexed to the [M(Co)(3)](+) core (M=Tc, Re) and the properties of the resulting complexes were investigated. Synthesis and characterization of the chelator 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)) and the corresponding Re complex are reported. All chelators were radiolabeled in high yield with [(99)mTc(CO)(3)(H(2)O)(3)](+) ( > 98%) and [(186)Re(CO)(3)(H(2)O)(3)](+) ( > 80%). The chelators and Re-complexes were determined to not be substrates for the glucose metabolism enzyme hexokinase. However, the biodistribution of each of the (99m)Tc complexes demonstrated fast clearance from most background tissue, including >75% clearance of the activity in the kidneys and the liver within 2 h post-injection. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The complexes trans-[Ru(NO)(NH(3))(4)L](X)(3) (X = BF(4)(-), PF(6)(-) or Cl(-) and L = N-heterocyclic ligands, P (OEt)(3), SO(3)(-2)), and [Ru(NO)Hedta)] were shown to exhibit IC(50pro) in the range of 36 (L = imN) to 5000 mu M (L = imC). The inhibitory effects of trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) and of the Angeli`s salt on the growth of the intramacrophage amastigote form studied were found to be similar while the trans-[Ru(NH(3))(4)imN(H(2)O)](2+) complex was found not to exhibit any substantial antiamastigote effect. The trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compound, administered (500 nmol kg(-1) day(-1)) in BALB/c mice infected with Leishmania major, was found to exhibit a 98% inhibition on the parasite growth. Furthermore, this complex proved to be at least 66 times more efficient than glucantime in in vivo experiments. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Introduction: The aim of this study was to assess cyclic fatigue resistance in rotary nickel-titanium instruments submitted to nitrogen ion implantation by using a custom-made cyclic fatigue testing apparatus. Methods: Thirty K3 files, size #25, taper 0.04, were divided into 3 experimental groups as follows: group A, 12 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), accelerating voltage of 200 kV, currents of 1 mu A/cm(2), 130 degrees C temperature, and vacuum conditions of 10 x 10(-6) torr for 6 hours; group B, 12 nonimplanted files; and group C, 6 files submitted to thermal annealing for 6 hours at 130 degrees C. One extra file was used for process control. All files were submitted to a cyclic fatigue test that was performed with an apparatus that allowed the instruments to rotate freely, simulating rotary instrumentation of a curved canal (40-degree, 5-mm radius curve). An electric motor handpiece was used with a contra-angle of 16:1 at an operating speed of 300 rpm and a torque of 2 N-cm. Time to failure was recorded with a stopwatch in seconds and subsequently converted to number of cycles to fracture. Data were analyzed with the Student t test (P < .05). Results: Ion-implanted instruments reached significantly higher cycle numbers before fracture (mean, 510 cycles) when compared with annealed (mean, 428 cycles) and nonimplanted files (mean, 381 cycles). Conclusions: Our results showed that nitrogen ion implantation improves cyclic fatigue resistance in rotary nickel-titanium instruments. Industrial implementation. of this surface modification technique would produce rotary nickel-titanium instruments with a longer working life. (J Endod 2010;36:1183-1186)