48 resultados para microarray data classification
Resumo:
A chemotaxonomic analysis is described of a database containing various types of compounds from the Heliantheae tribe (Asteraceae) using Self-Organizing Maps (SOM). The numbers of occurrences of 9 chemical classes in different taxa of the tribe were used as variables. The study shows that SOM applied to chemical data can contribute to differentiate genera, subtribes, and groups of subtribes (subtribe branches), as well as to tribal and subtribal classifications of Heliantheae, exhibiting a high hit percentage comparable to that of an expert performance, and in agreement with the previous tribe classification proposed by Stuessy.
Resumo:
Recently, we have built a classification model that is capable of assigning a given sesquiterpene lactone (STL) into exactly one tribe of the plant family Asteraceae from which the STL has been isolated. Although many plant species are able to biosynthesize a set of peculiar compounds, the occurrence of the same secondary metabolites in more than one tribe of Asteraceae is frequent. Building on our previous work, in this paper, we explore the possibility of assigning an STL to more than one tribe (class) simultaneously. When an object may belong to more than one class simultaneously, it is called multilabeled. In this work, we present a general overview of the techniques available to examine multilabeled data. The problem of evaluating the performance of a multilabeled classifier is discussed. Two particular multilabeled classification methods-cross-training with support vector machines (ct-SVM) and multilabeled k-nearest neighbors (M-L-kNN)were applied to the classification of the STLs into seven tribes from the plant family Asteraceae. The results are compared to a single-label classification and are analyzed from a chemotaxonomic point of view. The multilabeled approach allowed us to (1) model the reality as closely as possible, (2) improve our understanding of the relationship between the secondary metabolite profiles of different Asteraceae tribes, and (3) significantly decrease the number of plant sources to be considered for finding a certain STL. The presented classification models are useful for the targeted collection of plants with the objective of finding plant sources of natural compounds that are biologically active or possess other specific properties of interest.
Resumo:
To evaluate differential gene expression in penile tissue after treatment with the phosphodiesterase 5 (PDE5) inhibitor tadalafil, as of the three clinically available PDE5 inhibitors (sildenafil, tadalafil, and vardenafil) used for the treatment of erectile dysfunction (ED), tadalafil has a long half-life and low incidence of side-effects. In all, 32 adult rats were divided into two groups. The control group received 0.5 mL of drinking water alone, while the tadalafil group was treated with tadalafil at a dose of 0.27 mg/kg. At 4 h after treatment with water or tadalafil the rats were killed and the penile tissue was removed. The total RNA was isolated from the penile tissue from both groups and differentially expressed genes were identified by cDNA microarray analysis. To validate the expression data from the microarray analysis, quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry were used. In all, 153 genes were differentially expressed between the control group and the tadalafil group. We validated the microarray results by quantitative PCR for the insulin-like growth factor binding protein 6 (IGFBP-6) gene and the neuronal calcium sensor 1 (NCS-1) gene, both of which were up-regulated in the tadalafil group, and for the natriuretic peptide receptor 1 (NPR-1) gene that was down-regulated in this group. Immunohistochemistry showed localization of the NCS-1 protein in sinusoid trabeculae of the corpus cavernosum in control and tadalafil-treated rats. There was differential expression in 153 genes after tadalafil treatment. Some of these genes such as IGFBP-6, NPR-1 and NCS-1, might result in new targets in the treatment of ED.
Resumo:
The traditional methods employed to detect atherosclerotic lesions allow for the identification of lesions; however, they do not provide specific characterization of the lesion`s biochemistry. Currently, Raman spectroscopy techniques are widely used as a characterization method for unknown substances, which makes this technique very important for detecting atherosclerotic lesions. The spectral interpretation is based on the analysis of frequency peaks present in the signal; however, spectra obtained from the same substance can show peaks slightly different and these differences make difficult the creation of an automatic method for spectral signal analysis. This paper presents a signal analysis method based on a clustering technique that allows for the classification of spectra as well as the inference of a diagnosis about the arterial wall condition. The objective is to develop a computational tool that is able to create clusters of spectra according to the arterial wall state and, after data collection, to allow for the classification of a specific spectrum into its correct cluster.
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.
Resumo:
Microarray gene expression profiling is a high-throughput system used to identify differentially expressed genes and regulation patterns, and to discover new tumor markers. As the molecular pathogenesis of meningiomas and schwannomas, characterized by NF2 gene alterations, remains unclear and suitable molecular targets need to be identified, we used low density cDNA microarrays to establish expression patterns of 96 cancer-related genes on 23 schwannomas, 42 meningiomas and 3 normal cerebral meninges. We also performed a mutational analysis of the NF2 gene (PCR, dHPLC, Sequencing and MLPA), a search for 22q LOH and an analysis of gene silencing by promoter hypermethylation (MS-MLPA). Results showed a high frequency of NF2 gene mutations (40%), increased 22q LOH as aggressiveness increased, frequent losses and gains by MLPA in benign meningiomas, and gene expression silencing by hypermethylation. Array analysis showed decreased expression of 7 genes in meningiomas. Unsupervised analyses identified 2 molecular subgroups for both meningiomas and schwannomas showing 38 and 20 differentially expressed genes, respectively, and 19 genes differentially expressed between the two tumor types. These findings provide a molecular subgroup classification for meningiomas and schwannomas with possible implications for clinical practice.
Resumo:
Background: The presence of cancer stem cell (CSC) antigens can be evidenced in some human tumors by phenotypic analysis through immunostaining. This study aims to identify a putative CSC immunophenotype in oral squamous cell carcinoma (OSCC) and determine its influence on prognosis. Methods: The following data were retrieved from 157 patents: age, gender, primary anatomic site, smoking and alcohol intake, recurrence, metastases, histologic classification, treatment, disease-free survival (DFS), and overall survival (OS). An immunohistochemical study for CD44 and CD24 was performed in a tissue microarray of 157 paraffin blocks of OSCCs. Results: In univariate analysis, the immunostaining pattern showed significant influences in relation to OS for alcohol intake and treatment, as well as for the CD44+ and CD44-/CD24- immunophenotypes. The multivariate test confirmed these associations. Conclusions: Based on our results, the CD44 immunostaining and the absence of immunoexpression of these two investigated markers can be used in combination with other clinicopathologic information to improve the assessment of prognosis in OSCC.
Resumo:
Introduction Human immunodeficiency virus (HIV) is a serious disease which can be associated with various activity limitations and participation restrictions. The aim of this paper was to describe how HIV affects the functioning and health of people within different environmental contexts, particularly with regard to access to medication. Method Four cross-sectional studies, three in South Africa and one in Brazil, had applied the International Classification of Functioning, Disability and Health (ICF) as a classification instrument to participants living with HIV. Each group was at a different stage of the disease. Only two groups had had continuing access to antiretroviral therapy. The existence of these descriptive sets enabled comparison of the disability experienced by people living with HIV at different stages of the disease and with differing access to antiretroviral therapy. Results Common problems experienced in all groups related to weight maintenance, with two-thirds of the sample reporting problems in this area. Mental functions presented the most problems in all groups, with sleep (50%, 92/185), energy and drive (45%, 83/185), and emotional functions (49%, 90/185) being the most affected. In those on long-term therapy, body image affected 93% (39/42) and was a major problem. The other groups reported pain as a problem, and those with limited access to treatment also reported mobility problems. Cardiopulmonary functions were affected in all groups. Conclusion Functional problems occurred in the areas of impairment and activity limitation in people at advanced stages of HIV, and more limitations occurred in the area of participation for those on antiretroviral treatment. The ICF provided a useful framework within which to describe the functioning of those with HIV and the impact of the environment. Given the wide spectrum of problems found, consideration could be given to a number of ICF core sets that are relevant to the different stages of HIV disease. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Astronomy has evolved almost exclusively by the use of spectroscopic and imaging techniques, operated separately. With the development of modern technologies, it is possible to obtain data cubes in which one combines both techniques simultaneously, producing images with spectral resolution. To extract information from them can be quite complex, and hence the development of new methods of data analysis is desirable. We present a method of analysis of data cube (data from single field observations, containing two spatial and one spectral dimension) that uses Principal Component Analysis (PCA) to express the data in the form of reduced dimensionality, facilitating efficient information extraction from very large data sets. PCA transforms the system of correlated coordinates into a system of uncorrelated coordinates ordered by principal components of decreasing variance. The new coordinates are referred to as eigenvectors, and the projections of the data on to these coordinates produce images we will call tomograms. The association of the tomograms (images) to eigenvectors (spectra) is important for the interpretation of both. The eigenvectors are mutually orthogonal, and this information is fundamental for their handling and interpretation. When the data cube shows objects that present uncorrelated physical phenomena, the eigenvector`s orthogonality may be instrumental in separating and identifying them. By handling eigenvectors and tomograms, one can enhance features, extract noise, compress data, extract spectra, etc. We applied the method, for illustration purpose only, to the central region of the low ionization nuclear emission region (LINER) galaxy NGC 4736, and demonstrate that it has a type 1 active nucleus, not known before. Furthermore, we show that it is displaced from the centre of its stellar bulge.
Resumo:
Epidendrum L. is the largest genus of Orchidaceae in the Neotropical region; it has an impressive morphological diversification, which imposes difficulties in delimitation of both infrageneric and interspecific boundaries. In this study, we review infrageneric boundaries within the subgenus Amphiglottium and try to contribute to the understanding of morphological diversification and taxa delimitation within this group. We tested the monophyly of the subgenus Amphiglottium sect. Amphiglottium, expanding previous phylogenetic investigations and reevaluated previous infrageneric classifications proposed. Sequence data from the trnL-trnF region were analyzed with both parsimony and maximum likelihood criteria. AFLP markers were also obtained and analyzed with phylogenetic and principal coordinate analyses. Additionally, we obtained chromosome numbers for representative species within the group. The results strengthen the monophyly of the subgenus Amphiglottium but do not support the current classification system proposed by previous authors. Only section Tuberculata comprises a well-supported monophyletic group, with sections Carinata and Integra not supported. Instead of morphology, biogeographical and ecological patterns are reflected in the phylogenetic signal in this group. This study also confirms the large variability of chromosome numbers for the subgenus Amphiglottium (numbers ranging from 2n = 24 to 2n = 240), suggesting that polyploidy and hybridization are probably important mechanisms of speciation within the group.
Resumo:
Predictive performance evaluation is a fundamental issue in design, development, and deployment of classification systems. As predictive performance evaluation is a multidimensional problem, single scalar summaries such as error rate, although quite convenient due to its simplicity, can seldom evaluate all the aspects that a complete and reliable evaluation must consider. Due to this, various graphical performance evaluation methods are increasingly drawing the attention of machine learning, data mining, and pattern recognition communities. The main advantage of these types of methods resides in their ability to depict the trade-offs between evaluation aspects in a multidimensional space rather than reducing these aspects to an arbitrarily chosen (and often biased) single scalar measure. Furthermore, to appropriately select a suitable graphical method for a given task, it is crucial to identify its strengths and weaknesses. This paper surveys various graphical methods often used for predictive performance evaluation. By presenting these methods in the same framework, we hope this paper may shed some light on deciding which methods are more suitable to use in different situations.
Resumo:
This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing the tradeoff between the precise probability estimates produced by time consuming unrestricted Bayesian networks and the computational efficiency of Naive Bayes (NB) classifiers. The proposed approach is based on the fundamental principles of the Heuristic Search Bayesian network learning. The Markov Blanket concept, as well as a proposed ""approximate Markov Blanket"" are used to reduce the number of nodes that form the Bayesian network to be induced from data. Consequently, the usually high computational cost of the heuristic search learning algorithms can be lessened, while Bayesian network structures better than NB can be achieved. The resulting algorithms, called DMBC (Dynamic Markov Blanket Classifier) and A-DMBC (Approximate DMBC), are empirically assessed in twelve domains that illustrate scenarios of particular interest. The obtained results are compared with NB and Tree Augmented Network (TAN) classifiers, and confinn that both proposed algorithms can provide good classification accuracies and better probability estimates than NB and TAN, while being more computationally efficient than the widely used K2 Algorithm.
Resumo:
This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
There is a family of well-known external clustering validity indexes to measure the degree of compatibility or similarity between two hard partitions of a given data set, including partitions with different numbers of categories. A unified, fully equivalent set-theoretic formulation for an important class of such indexes was derived and extended to the fuzzy domain in a previous work by the author [Campello, R.J.G.B., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Lett., 28, 833-841]. However, the proposed fuzzy set-theoretic formulation is not valid as a general approach for comparing two fuzzy partitions of data. Instead, it is an approach for comparing a fuzzy partition against a hard referential partition of the data into mutually disjoint categories. In this paper, generalized external indexes for comparing two data partitions with overlapping categories are introduced. These indexes can be used as general measures for comparing two partitions of the same data set into overlapping categories. An important issue that is seldom touched in the literature is also addressed in the paper, namely, how to compare two partitions of different subsamples of data. A number of pedagogical examples and three simulation experiments are presented and analyzed in details. A review of recent related work compiled from the literature is also provided. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The substitution of missing values, also called imputation, is an important data preparation task for many domains. Ideally, the substitution of missing values should not insert biases into the dataset. This aspect has been usually assessed by some measures of the prediction capability of imputation methods. Such measures assume the simulation of missing entries for some attributes whose values are actually known. These artificially missing values are imputed and then compared with the original values. Although this evaluation is useful, it does not allow the influence of imputed values in the ultimate modelling task (e.g. in classification) to be inferred. We argue that imputation cannot be properly evaluated apart from the modelling task. Thus, alternative approaches are needed. This article elaborates on the influence of imputed values in classification. In particular, a practical procedure for estimating the inserted bias is described. As an additional contribution, we have used such a procedure to empirically illustrate the performance of three imputation methods (majority, naive Bayes and Bayesian networks) in three datasets. Three classifiers (decision tree, naive Bayes and nearest neighbours) have been used as modelling tools in our experiments. The achieved results illustrate a variety of situations that can take place in the data preparation practice.