113 resultados para localized amyloidosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBP(II)), which is the most variable segment of the protein. Methods: To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBP(II) in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBP(II), and T-and B-cell epitopes were localized on the 3-D structure. Results: The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBP(II), and (ii) PvDBP(II) appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions: This study shows that some polymorphisms of PvDBP(II) are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relativistic heavy ion program developed at RHIC and now at LHC motivated a deeper study of the properties of the quark-gluon plasma (QGP) and, in particular, the study of perturbations in this kind of plasma. We are interested on the time evolution of perturbations in the baryon and energy densities. If a localized pulse in baryon density could propagate throughout the QGP for long distances preserving its shape and without loosing localization, this could have interesting consequences for relativistic heavy ion physics and for astrophysics. A mathematical way to prove that this can happen is to derive (under certain conditions) from the hydrodynamical equations of the QGP a Korteveg-de Vries (KdV) equation. The solution of this equation describes the propagation of a KdV soliton. The derivation of the KdV equation depends crucially on the equation of state (EOS) of the QGP. The use of the simple MIT bag model EOS does not lead to KdV solitons. Recently we have developed an EOS for the QGP which includes both perturbative and nonperturbative corrections to the MIT one and is still simple enough to allow for analytical manipulations. With this EOS we were able to derive a KdV equation for the cold QGP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the electronic properties of Mn(B) substitutional doping in cubic boron nitride (BN), for different charge states, using density functional theory (DFT) calculations. We show that the neutral Mn has a nonmagnetic ground state (S=0). Upon charge injection, it is unambiguously shown that the Mn(B)(-) has a high-spin configuration with a strong, localized magnetic moment of 5 mu(Bohr). We developed a simple model, parameterized by the DFT results, that allows us to interpret the rules played by the crystal-field and exchange-correlation splitting in the magnetization process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetization and Mossbauer spectroscopy measurements are performed at low temperature under high field, on nanoparticles with a nickel ferrite core and a maghemite shell. These nanoparticles present finite size and surface effects, together with exchange anisotropy. High field magnetization brings the evidences of a monodomain ordered core and surface spins freezing in disorder at low temperature. Mossbauer spectra at 4.2 K present an extra contribution from the disordered surface which is field dependent. Field and size dependences of this latter show a progressive spin alignment along the ferrite core which is size dependent. The weak surface pinning condition of the nanoparticles confirms that the spin disorder is localized in the external shell. The underfield decrease in the mean canting angle in the superficial shell is then directly related to the unidirectional exchange anisotropy through the interface between the ordered core and the disordered shell. The obtained anisotropy field H(Ea) scales as the inverse of the nanoparticle diameter, validating its interfacial origin. The associated anisotropy constant K(Ea) equals 2.5 x 10(-4) J/m(2). (C) 2009 American Institute qf Physics. [doi: 10.1063/1.3245326]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study trapping and propagation of a matter-wave soliton through the interface between uniform medium and a nonlinear optical lattice. Different regimes for transmission of a broad and a narrow solitons are investigated. Reflections and transmissions of solitons are predicted as a function of the lattice phase. The existence of a threshold in the amplitude of the nonlinear optical lattice, separating the transmission and reflection regimes, is verified. The localized nonlinear surface state, corresponding to the soliton trapped by the interface, is found. Variational approach predictions are confirmed by numerical simulations for the original Gross-Pitaevskii equation with nonlinear periodic potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electron properties of artificially disordered superlattices embedded in a wide AlGaAs parabolic well were investigated in a strong magnetic field. We demonstrated that in the extreme quantum limit the interlayer disorder results in formation of a new correlated phase. A nearly uniform electron distribution over the superlattice wells was found in a weak magnetic field. However, a nonuniform phase with partially localized electrons, representing well-developed fractional quantum Hall effect features, was observed in high magnetic field (at the filling factor v < 1). A distinct magnetic field-induced transition separates these two phases. (C) 2011 American Institute of Physics. [doi:10.1063/1.3576134]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the propagation of perturbations in the quark gluon plasma. This subject has been addressed in other works and in most of the theoretical descriptions of this phenomenon the hydrodynamic equations have been linearized for simplicity. We propose an alternative approach, also based on hydrodynamics but taking into account the nonlinear terms of the equations. We show that these terms may lead to localized waves or even solitons. We use a simple equation of state for the QGP and expand the hydrodynamic equations around equilibrium configurations. The resulting differential equations describe the propagation of perturbations in the energy density. We solve them numerically and find that localized perturbations can propagate for long distances in the plasma. Under certain conditions our solutions mimic the propagation of Korteweg-de Vries solitons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A photoluminescence (PL) study of the individual electron states localized in a random potential is performed in artificially disordered superlattices embedded in a wide parabolic well. The valence band bowing of the parabolic potential provides a variation of the emission energies which splits the optical transitions corresponding to different wells within the random potential. The blueshift of the PL lines emitted by individual random wells, observed with increasing disorder strength, is demonstrated. The variation of temperature and magnetic field allowed for the behavior of the electrons localized in individual wells of the random potential to be distinguished.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transition of plasmons from propagating to localized state was studied in disordered systems formed in GaAs/AlGaAs superlattices by impurities and by artificial random potential. Both the localization length and the linewidth of plasmons were measured by Raman scattering. The vanishing dependence of the plasmon linewidth on the disorder strength was shown to be a manifestation of the strong plasmon localization. The theoretical approach based on representation of the plasmon wave function in a Gaussian form well accounted for by the obtained experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of interface effects for organic devices has long been recognized, but getting detailed knowledge of the extent of such effects remains a major challenge because of the difficulty in distinguishing from bulk effects. This paper addresses the interface effects on the emission efficiency of poly(p-phenylene vinylene) (PPV), by producing layer-by-layer (LBL) films of PPV alternated with dodecylbenzenesulfonate. Films with thickness varying from similar to 15 to 225 nm had the structural defects controlled empirically by converting the films at two temperatures, 110 and 230 degrees C, while the optical properties were characterized by using optical absorption, photoluminescence (PL), and photoluminescence excitation spectra. Blueshifts in the absorption and PL spectra for LBL films with less than 25 bilayers (<40-50 nm) pointed to a larger number of PPV segments with low conjugation degree, regardless of the conversion temperature. For these thin films, the mean free-path for diffusion of photoexcited carriers decreased, and energy transfer may have been hampered owing to the low mobility of the excited carriers. The emission efficiency was then found to depend on the concentration of structural defects, i.e., on the conversion temperature. For thick films with more than 25 bilayers, on the other hand, the PL signal did not depend on the PPV conversion temperature. We also checked that the interface effects were not caused by waveguiding properties of the excited light. Overall, the electronic states at the interface were more localized, and this applied to film thickness of up to 40-50 nm. Because this is a typical film thickness in devices, the implication from the findings here is that interface phenomena should be a primary concern for the design of any organic device. (C) 2011 American Institute of Physics. [doi:10.1063/1.3622143]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of interlayer coupling on the formation of the quantized Hall phase at the filling factor nu=2 was studied in multilayer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to localized electrons was found in the quantized Hall phase of the isolated multi-quanturn-well structure. On the other hand, the quantized Hall phase of weakly coupled multilayers emitted an unexpected asymmetrical line similar to that observed in metallic electron systems. We demonstrated that the observed asymmetry is caused by the partial population of extended electron states formed in the insulating quantized Hall phase due to spin-assisted interlayer percolation. A sharp decrease in the single-particle scattering time associated with these extended states was observed for the filling factor nu=2. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2978194]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoluminescence (PL) technique as a function of temperature and excitation intensity was used to study the optical properties of multiquantum wells (MQWs) of GaAs/Al(x)Ga(1-x)As grown by molecular beam epitaxy on GaAs substrates oriented in the [100], [311]A, and [311]B directions. The asymmetry presented by the PL spectra of the MQWs with an apparent exponential tail in the lower-energy side and the unusual behavior of the PL peak energy versus temperature (blueshift) at low temperatures are explained by the exciton localization in the confinement potential fluctuations of the heterostructures. The PL peak energy dependence with temperature was fitted by the expression proposed by Passler [Phys. Status Solidi B 200, 155 (1997)] by subtracting the term sigma(2)(E)/k(B)T, which considers the presence of potential fluctuations. It can be verified from the PL line shape, the full width at half maximum of PL spectra, the sigma(E) values obtained from the adjustment of experimental points, and the blueshift maximum values that the samples grown in the [311]A/B directions have higher potential fluctuation amplitude than the sample grown in the [100] direction. This indicates a higher degree of the superficial corrugations for the MQWs grown in the [311] direction. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper aims to study evolution of increase, distribution and classification of pits in 310S austenitic stainless steels obtained in the state as-received and heat-treated under different exposure times in saline. This work applicability has been based on a technique development for morphologic characterization of localized corrosion associated with description aspects of shapes, size and population-specific parameters. Methodology has been consisted in the following steps: specimens preparation, corrosion tests via salt spray in different conditions, microstructural analysis, pits profiles analysis and images analysis, digital processing and image analysis in order to characterize the pits distribution, morphology and size. Results obtained in digital processing and profiles image analysis have been subjected to statistical analysis using median as parameter in the alloy as received and treated. The alloy as received displays the following morphology: hemispheric pits> transition region A> transition region B> irregular> conic. The pits amount in the treated alloy at each exposure time is: transition region B> hemispherical> transition region A> conic> irregular.