54 resultados para interface friction
Resumo:
Objectives: To evaluate the efficacy of simplified dehydration protocols, in the absence of tubular occlusion, on bond strength and interfacial nanoleakage of a hydrophobic experimental adhesive blend to acid-etched, ethanol-dehydrated dentine immediately and after 6 months. Methods: Molars were randomly assigned to 6 treatment groups (n = 5). Under pulpal pressure simulation, dentine crowns were acid-etched with 35% H(3)PO(4) and rinsed with water. Adper Scotchbond Multi-Purpose was used for the control group. The remaining groups had their dentine surface dehydrated with ethanol solutions: group 1 = 50%, 70%, 80%, 95% and 3 x 100%, 30 s for each application; group 2 the same ethanol sequence with 15 s for each solution; groups 3, 4 and 5 used 100% ethanol only, applied in seven, three or one 30 s step, respectively. After dehydration, a primer (50% BisGMA + TEGDMA, 50% ethanol) was used, followed by the neat comonomer adhesive application. Resin composite build-ups were then prepared using an incremental technique. Specimens were stored for 24 h, sectioned into beams and stressed to failure after 24 h or after 6 months of artificial ageing. Interfacial silver leakage evaluation was performed for both storage periods (n = 5 per subgroup). Results: Group 1 showed higher bond strengths at 24 h or after 6 months of ageing (45.6 +/- 5.9(a)/43.1 +/- 3.2(a) MPa) and lower silver impregnation. Bond strength results were statistically similar to control group (41.2 +/- 3.3(ab)/38.3 +/- 4.0(ab) MPa), group 2 (40.0 +/- 3.1(ab)/38.6 +/- 3.2(ab) MPa), and group 3 at 24 h (35.5 +/- 4.3(ab) MPa). Groups 4 (34.6 +/- 5.7(bc)/25.9 +/- 4.1(c) MPa) and 5 (24.7 +/- 4.9(c)/18.2 +/- 4.2(c) MPa) resulted in lower bond strengths, extensive interfacial nanoleakage and more prominent reductions (up to 25%) in bond strengths after 6 months of ageing. Conclusions: Simplified dehydration protocols using one or three 100% ethanol applications should be avoided for the ethanol-wet bonding technique in the absence of tubular occlusion, as they showed decreased bond strength, more severe nanoleakage and reduced bond stability over time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of this in vitro study was to analyze the effect of glass-ionomer cement as a liner on the dentin/resin adhesive interface of lateral walls of occlusal restorations after thermocycling. Materials and Methods: Occlusal cavities were prepared in 60 human molars, divided into six groups: no liner (1 and 4); glass-ionomer cement (GIC, Ketac Molar Easymix, 3M ESPE) (2 and 5); and resin-modified glass-ionomer cement (RMGIC, Vitrebond, 3M ESPE) (3 and 6). Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper Single Bond 2, 3M ESPE) that was mixed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. Specimens of groups 4, 5 and 6 were thermocycled (5 degrees C-55 degrees C) with a dwell time of 30 seconds for 5000 cycles. After this period, teeth were sectioned in approximately 0.8-mm slices. One slice of each tooth was randomly selected for confocal microscopy analysis. The other slices were sectioned into 0.8 nun x 0.8 mm beams, which were submitted to microtensile testing (MPa). Data were analyzed using two-way ANOVA and Tukey test (p < 0.05). Results: There was no detectedstatistical difference on bond strength among groups (alpha < 0.05). Confocal microscopy analysis showed a higher mean gap size in group 4(12.5 mu m) and a higher percentage of marginal gaps in the thermocycled groups. The RNIGIC liner groups showed the lowest percentage of marginal gaps. Conclusions: Lining with RMGIC resulted in less gap formation at the dentin/resin adhesive interface after artificial aging. RMGIC or GIC liners did not alter the microtensile bond strength of adhesive system/resin composite to dentin on the lateral walls of Class I restorations.
Resumo:
Purpose: The study evaluates the behavior of different adhesive systems and resin cements in fiber post placement, with the intent to clarify the possible role of unfilled resin as a luting material for fiber posts. Materials and Methods: Two luting agents (Dual-Link and Unfilled Resin) for cementing fiber posts into root canals were applied either with All-Bond 2 or One-Step Plus, or without an adhesive system, and challenged with the push-out test. Slices of roots restored with posts were loaded until post segment extrusion in the apical-coronal direction. Failure modes were analyzed under SEM. Results: Push-out strength was significantly influenced by the luting agent (p < 0.05), but not by the bonding strategy (p > 0.05). The best results were obtained in combination with Unfilled Resin with One-Step Plus. Dual-Link groups failed mainly cohesively within the cement, while Unfilled Resin demonstrated more adhesive fracture at the post interface. Conclusion: The results of this study support the hypothesis that adhesive unfilled resin application is essential for achieving high bond strength to radicular dentin.
Resumo:
The objective of the present study was to assess the influence of decortication of the posterior elements of the vertebra (recipient bed) and the nature of the bone graft (cortical or cancellous bone) on graft integration and bone, cartilage and fiber neoformation in the interface between the vertebral recipient bed and the bone graft. Seventy-two male Wistar rats were divided into four experimental groups according to the presence or absence of decortication of the posterior vertebral elements and the use of a cortical or cancellous bone graft. Group I-the posterior elements were decorticated and cancellous bone used. Group II-the posterior elements were decorticated and cortical graft was used. Group III-the posterior elements were not decorticated and cancellous graft was used. Group IV-the posterior elements were not decorticated and cortical graft was used. The animals were killed 3, 6 and 9 weeks after surgery and the interface between the posterior elements and the bone graft was subjected to histomorphometric evaluation. Mean percent neoformed bone was 40.8% in group I (decortication and cancellous graft), 39.13% in group II (decortication and cortical graft), 6.13% in group III (non-decorticated and cancellous graft), and 9.27% in group IV (non-decorticated and cortical graft) for animals killed at 3 weeks (P = 0.0005). For animals killed at 6 weeks, the mean percent was 38.53% for group I, 40.40% for group II, 10.27% for group III, and 7.6% for group IV (P = 0.0005), and for animals killed at 9 weeks, the mean was 25.93% for group I, 30.6% for group II, 16.4% for group III, and 18.73% for group IV (P = 0.0026). The mean percent neoformed cartilage tissue was 8.36% for group I, 7.46% for group II, 11.1% for group III, and 9.13% for group IV for the animals killed at 3 weeks (P = 0.6544); 6.6% for group I, 8.07% for group, 7.47% for group III and 6.13% for group IV (P = 0.4889) for animals killed at 6 weeks, and 3.13% for group I, 4.06% for group II, 10.53% for group III and 12.07% for group IV (P = 0.0006) for animals killed at 9 weeks. Mean percent neoformed fibrous tissue was 11% for group I, 6.13% for group II, 26.27% for group III and 21.87% for group IV for animals killed at 3 weeks (P = 0.0008); 7.67% for group I, 7.1% for group II, 9.8% for group III and 10.4% for group IV (P = 0.7880) for animals killed at 6 weeks, and 3.73% for group I, 4.4% for group II, 6.67% for group III and 6.8% for group IV (P = 0.0214) for animals killed at 9 weeks. The statistically significant differences in percent tissue formation were related to decortication of the posterior elements. The use of a cortical or cancellous graft did not influence tissue neoformation. Ossification in the interface of the recipient graft bed was of the intramembranous type in the decorticated animals and endochondral type in the non-decorticated animals.
Resumo:
Introduction: A common complication during the restoration of severely destroyed teeth is the loss of coronal root dentine. The aim of this study was to evaluate the influence of different sealers on the bonding interface of weakened roots reinforced with resin and fiber posts. Methods: Sixty extracted maxillary canines were used. The crowns were removed, and the thickness of root dentine was reduced in the experimental (n = 40) and positive control (n = 10) groups. The specimens of experimental group were assigned to four subgroups (n = 10) according to the filling material: gutta-percha + Grossmann`s sealer, gutta-percha + AH Plus (Dentsply De Trey Gmbh, Konstanz, Germany), gutta-percha + Epiphany (Pentron Clinical Technologies, Wallingford, CT), and Resilon (Resilon Research LLC, Madison, CT) + Epiphany. In the negative control group (n = 10), canals were not filled. After post space preparation, the roots were restored with composite resin light-activated through a translucent fiber post. After 24 hours, specimens were transversally sectioned into 1-mm-thick slices. Push-out test and scanning electron microscopic (SEM) analyses of different regions were performed. Data from push-out test were analyzed by using Tukey post hoc multiple comparison tests. The percentage of failure type was calculated. Data from SEM analysis were compared by Friedman and Kruskal-Wallis tests (alpha = 0.05). Results: The mean bond strength was significantly higher in the negative control group as compared with the other groups (P < .05). In all groups, the most frequent type of failure was adhesive. Overall, apical and middle regions presented a lower density of resin tags than the coronal region (P < .05). Conclusions: The push-out bond strength was not affected by sealer or region. The canal region affected significantly the resin tag morphology and density at the bonding interface. (J Endod 2011;37:531-537)
Resumo:
Background: It remains unclear as to whether or not dental bleaching affects the bond strength of dentin/resin restoration. Purpose: To evaluated the bond strength of adhesive systems to dentin submitted to bleaching with 38% hydrogen peroxide (HP) activated by LED-laser and to assess the adhesive/dentin interfaces by means of SEM. Study design: Sixty fragments of dentin (25 mm(2)) were included and divided into two groups: bleached and unbleached. HP was applied for 20 s and photoactivated for 45 s. Groups were subdivided according to the adhesive systems (n = 10): (1) two-steps conventional system (Adper Single Bond), (2) two-steps self-etching system (Clearfil standard error (SE) Bond), and (3) one-step self-etching system (Prompt L-Pop). The specimens received the Z250 resin and, after 24 h, were submitted to the bond strength test. Additional 30 dentin fragments (n = 5) received the same surface treatments and were prepared for SEM. Data were analyzed by ANOVA and Tukey`s test (alpha = 0.05). Results: There was significant strength reduction in bleached group when compared to unbleached group (P < 0.05). Higher bond strength was observed for Prompt. Single Bond and Clearfil presented the smallest values when used in bleached dentin. SEM analysis of the unbleached specimens revealed long tags and uniform hybrid layer for all adhesives. In bleached dentin, Single Bond provided open tubules and with few tags, Clearfil determined the absence of tags and hybrid layer, and Prompt promoted a regular hybrid layer with some tags. Conclusions: Prompt promoted higher shear bond strength, regardless of the bleaching treatment and allowed the formation of a regular and fine hybrid layer with less deep tags, when compared to Single Bond and Clearfil. Microsc. Res. Tech. 74:244-250, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The aim of this in vitro study was to evaluate bacterial leakage along the implant-abutment interface under unloaded conditions. Twelve premachined abutments with plastic sleeves and 12 dental implants were used in this study. Prior to tests of bacterial leakage, samples from the inner parts of the implants were collected with sterile microbrushes to serve as negative controls for contamination. After casting, the abutments were tightened to 32 Ncm on the implants. The assemblies were immersed in 2.0 mL of human saliva and incubated for 7 days. After this period, possible contamination of the internal parts of the implants was evaluated using the DNA Checkerboard method. Microorganisms were found in the internal surfaces of all the implants evaluated. Aggregatibacter actinomycetemcomitans and Capnocytophaga gingivalis were the most incident species. No microorganisms were found in the samples recovered from the implants before contamination testing (negative control). Bacterial species from human saliva may penetrate the implant-abutment interface under unloaded conditions. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:782-787
Resumo:
Objectives Bacterial penetration along the implant-abutment interface as a consequence of abutment screw loosening has been reported in a number of recent studies. The aim of this in vitro study was to investigate the influence of repeated tightening of the abutment screw on leakage of Streptococcus mutans along the interface between implants and pre-machined abutments. Materials and methods Twenty pre-machined abutments with a plastic sleeve were used. The abutment screws were tightened to 32 N cm in group 1 (n=10 - control) and to 32 N cm, loosened and re-tightened with the same torque twice in group 2 (n=10). The assemblies were completely immersed in 5 ml of Tryptic Soy Broth medium inoculated with S. mutans and incubated for 14 days. After this period, contamination of the implant internal threaded chamber was evaluated using the DNA Checkerboard method. Results Microorganisms were found on the internal surfaces of both groups evaluated. However, bacterial counts in group 2 were significantly higher than that in the control group (P < 0.05). Conclusion These results suggest that bacterial leakage between implants and abutments occurs even under unloaded conditions and at a higher intensity when the abutment screw is tightened and loosened repeatedly. To cite this article:do Nascimento C, Pedrazzi V, Kirsten Miani P, Daher Moreira L, de Albuquerque Junior RF. Influence of repeated screw tightening on bacterial leakage along the implant-abutment interface.Clin. Oral Impl. Res. 20, 2009; 1394-1397.doi: 10.1111/j.1600-0501.2009.01769.x.
Resumo:
The study evaluated the in vitro influence of pulse-repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface. Dentin surfaces of buccal or lingual surfaces from human third molars were submitted to tensile test in different depths (superficial, 1.0 and 1.5 mm) of the same dental area, using the same sample. Surface treatments were acid conditioning solely (control) and Er:YAG laser irradiation (80 mJ) followed by acid conditioning, with different pulse-repetition rates (1, 2, 3, or 4 Hz). Single bond/Z-250 system was used. The samples were stored in distilled water at 37 degrees C for 24 h, and then the first test (superficial dentine) was performed. The bond failures were analyzed. Following, the specimens were identified, grounded until 1.0- and 1.5-mm depths, submitted again to the treatments and to the second and, after that, to third-bond tests on a similar procedure and failure analysis. ANOVA and Tukey test demonstrated a significant difference (p < 0.001) for treatment and treatment X depth interaction (p < 0.05). The tested depths did not show influence (p > 0.05) on the bond strength of dentin-resin interface. It may be concluded that Er:YAG laser with 1, 2, 3, or 4 Hz combined with acid conditioning did not increase the resin tensile bond strength to dentin, regardless of dentin depth. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Purpose: To assess in vitro the shear bond strength at the resin/dentin interface in primary teeth after contamination with fresh human blood. Methods: 75 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface. The specimens were randomly assigned to five groups (n=15), according to the surface treatment. Group I (control) had no blood contamination. The other groups were blood-contaminated and subjected to different post-contamination protocols: in Group 2, the surfaces were rinsed with water; in Group 3, the surfaces were air-dried; in Group 4, the surfaces were rinsed and air-dried; and in Group 5, no post-contamination treatment was done. In all groups, a 3-mm dentin bonding site was demarcated, Single Bond adhesive system was applied and resin composite cylinders were bonded. After 24 hours in distilled water, shear bond strength was tested at a crosshead speed of 0.5 mm/minute. Results: Means (in MPa) were: Group 1: 7.1 (+/- 4.2); Group 2: 4.0 (+/- 1.8); Group 3: 0.9 (+/- 0.7); Group 4: 3.9 (+/- 2.2) and Group 5: 1.3 (+/- 1.5). Data were analyzed statistically by the Kruskal-Wallis test at 5% significance level. Groups 2 and 4 were similar to each other (P > 0.05) and both ware similar to Group 1 (P > 0.05). These groups (2, 3 and 4) had statistically significantly higher bond strengths than Groups 3 and 5 (P < 0.05). Blood contamination negatively affected the shear bond strength to primary tooth dentin. Among the blood-contaminated groups, water-rinsed specimens had higher bond strengths than those that were exclusively air-dried or not submitted to any post-contamination protocol before adhesive application.
Resumo:
In recent clinical studies, contamination of the inner parts of dental implants through bacterial penetration along the implant components has been observed. The aim of the present in-vitro study was to investigate leakage of Fusobacterium. nucleatum through the interface between implants and premachined or cast abutments. Both premachined (n = 10) and cast (n = 10) implant abutment assemblies were inoculated with 3.0 mu L of microbial inoculum. The assemblies were completely immersed in 5.0 mL of tryptic soy broth culture medium to observe leakage at the implant-abutment interface after 14 days of anaerobic incubation. Bacterial growth in the medium, indicative of microbial leakage, was found only in 1 out of 9 samples (11.1%) in each group. Both premachined and cast abutments connected to external hexagonal implants provide low percentages of bacterial leakage through the interface in in vitro unloaded conditions if the manufacturer`s instructions and casting procedures are properly followed.
Resumo:
This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
Resumo:
A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.
Resumo:
In this work, we present a detailed study on the optical properties of two GaAs/Al(0.35)Ga(0.65)As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e(1)-hh(1) transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed. (C) 2009 Elsevier B.V. All rights reserved.