70 resultados para customized industrial products
Resumo:
BACKGROUND: Fatty acid sugar esters are used as non-ionic surfactants in cosmetics, foodstuffs and pharmaceuticals. In particular, monoesters of xylitol have attracted industrial interest due to their outstanding biological activities. In this work, xylitol monoesters were obtained by chemoenzymatic synthesis, in which, first, xylitol was made soluble in organic solvent by chemo-protecting reaction, followed by enzymatic esterification reaction using different acyl donors. A commercial immobilized Candida antartica lipase was used as catalyst, and reactions with pure xylitol were carried out to generate data for comparison. RESULTS: t-BuOH was found to be the most suitable solvent to carry out esterification reactions with both pure and protected xylitol. The highest yields were obtained for reactions carried out with pure xylitol, but in this case by-products, such as di- and tri-esters isomers were formed, which required a multi-step purification process. For the systems with protected xylitol, conversions of 86%, 58% and 24% were achieved using oleic, lauric and butyric acids, respectively. The structures of the monoesters were confirmed by (13)C- and (1)H-NMR and microanalysis. CONCLUSION: The chemoenzymatic synthesis of xylitol monoesters avoided laborious downstream processing when compared with reactions performed with pure xylitol. Monoesters production from protected xylitol was shown to be a practical, economical, and clean route for this process, allowing a simple separation, because there are no other products formed besides xylitol monoesters and residual xylitol. (C) 2009 Society of Chemical Industry
Resumo:
This keynote paper aims at analyzing relevant industrial demands for grinding research. The chosen focus is to understand what are the main research challenges in the extensive industrial use of the process. Since the automotive applications are the most important driving forces for grinding development, the paper starts with an analysis on the main trends in more efficient engines and the changes in their components that will affect the grinding performance. A view from 23 machine tool builders is also presented based on a survey made in interviews and during the EMO and IMTS machine tool shows. Case studies received by the STC G members were used to show how research centers and industries are collaborating. A view from the authors and the final conclusions show hot topics for future grinding research. (C) 2009 CIRP.
Resumo:
This paper evaluates the advantages of using hardwood short fibre pulp (eucalyptus) as alternative to softwood long fibre pulp (pinus) and polymer fibres, traditionally used in reinforcement of cement-based materials. The effects of cellulose fibre length on microstructure and on mechanical performance of fibre-cement composites were evaluated before and after accelerated ageing cycles. Hardwood pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to softwood long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Currently diverse industries have high pollution potential because their productive processes generate great volumes of refractory effluents. These effluents are problematic, mainly due to the presence of recalcitrant compounds that are detrimental in wastewater treatment plants using biological systems in their processes. In general, biological treatments do not remove refractory elements. Also, in most cases these compounds can inhibit the yield or are toxic for biota responsible to remove the polluting agents. The Advanced Oxidative Processes (AOPs) represent a technological alternative with a great potential for treatment of no biodegradable effluents. In this paper a review of the use of advanced oxidatives processes: Ozone (O(3)), peroxide of hydrogen (H(2)O(2)) and ultraviolet radiation (UV) is presented applied to the treatment of recalcitrant effluents.
Resumo:
Thermoplastic starch (TPS) was modified with ascorbic acid and citric acid by melt processing of native starch with glycerol as plasticizer in an intensive batch mixer at 160 degrees C. It was found that the molar mass decreases with acid content and processing time causing the reduction in melting temperature (T(m)). As observed by the results of X-ray diffraction and DSC measurements, crystallinity was not changed by the reaction with organic acids. T(m) depression with falling molar mass was interpreted on the basis of the effect of concentration of end-chain units, which act as diluents. FTIR did not show any appreciable change in starch chemical compositions, leading to the conclusion that the main changes observed were produced by the variation in molar mass of the material. We demonstrated that it is possible to decrease melt viscosity without the need for more plasticizer thus avoiding side-effects such as an increase in water affinity or relevant changes in the dynamic mechanical properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the potential of the fibrous material obtained from ethanol-water fractionation of bagasse as reinforcement of thermoplastic starches in order to improve their mechanical properties. The composites were elaborated using matrices of corn and cassava starches plasticized with 30 wt%glycerin. The mixtures (0,5,10 and 15 wt% bagasse fiber) were elaborated in a rheometer at 150 degrees C. The mixtures obtained were pressed on a hot plate press at 155 degrees C. The test specimens were obtained according to ASTM D638. Tensile tests, moisture absorption tests for 24 days (20-23 degrees C and 53% RH, ASTM E104), and dynamic-mechanical analyses (DMA) in tensile mode were carried out. Images by scanning electron microscopy (SEM) and X-ray diffraction were obtained. Fibers (10 wt% bagasse fiber) increased tensile strength by 44% and 47% compared to corn and cassava starches, respectively. The reinforcement (15 wt% bagasse fiber) increased more than fourfold the elastic modulus on starch matrices. The storage modulus at 30 C (E(30 degrees C)`) increased as the bagasse fiber content increased, following the trend of tensile elastic modulus. The results indicate that these fibers have potential applications in the development of biodegradable composite materials. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sao Paulo Research Foundation (FAPESP) in Brazil
Resumo:
The residues generation is a quite serious problem in several industrial areas and also in the lumbering area. The search for the elimination or reduction of the volume of generated residues is endless, however limited, resulting in the search for a proper destination or better use, instead of simply burning it. A lot of uses and services are commonly proposed, but with low aggregated value to the residue. This work shows the usage viability of different discarded residues and wood composites in the production of an electric guitar. Cupiuba, ipe and jatoba residues have been used besides wood composites of pinus. The residues and wood composites have shown appropriate resistance, surfacing quality and design terms, and could be used to substitute the traditionally wood used in the production of the instrument as well as in other products of similar characteristics and with larger aggregated value.
Resumo:
Petri net (PN) modeling is one of the most used formal methods in the automation applications field, together with programmable logic controllers (PLCs). Therefore, the creation of a modeling methodology for PNs compatible with the IEC61131 standard is a necessity of automation specialists. Different works dealing with this subject have been carried out; they are presented in the first part of this paper [Frey (2000a, 2000b); Peng and Zhou (IEEE Trans Syst Man Cybern, Part C Appl Rev 34(4):523-531, 2004); Uzam and Jones (Int J Adv Manuf Technol 14(10):716-728, 1998)], but they do not present a completely compatible methodology with this standard. At the same time, they do not maintain the simplicity required for such applications, nor the use of all-graphical and all-mathematical ordinary Petri net (OPN) tools to facilitate model verification and validation. The proposal presented here completes these requirements. Educational applications at the USP and UEA (Brazil) and the UO (Cuba), as well as industrial applications in Brazil and Cuba, have already been carried out with good results.
Resumo:
The calcium carbonate industry generates solid waste products which, because of their high alkaline content (CaO, CaCO(3) and Ca (OH)(2)), have a substantial impact on the environment. The objectives of this study are to characterize and classify the solid waste products, which are generated during the hydration process of the calcium carbonate industry, according to ABNT`s NBR 10.000 series, and to determine the potential and efficiency of using these solid residues to correct soil acidity. Initially, the studied residue was submitted to gross mass, leaching, solubility, pH. X-ray Diffractometry, Inductive Coupled Plasma - Atomic Emission Spectrometry (ICP-AES), granularity and humidity analyses. The potential and efficiency of the residue for correcting soil acidity was determined by analysis of the quality attributes for soil correctives (PN, PRNT, Ca and Mg contents, granularity). Consequently, the results show that the studied residue may be used as a soil acidity corrective, considering that a typical corrective compound is recommended for each different type of soil. Additionally, the product must be further treated (dried and ground) to suit the specific requirements of the consumer market.
Resumo:
The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.
Resumo:
The main scope of this work is the implementation of an MPC that integrates the control and the economic optimization of the system. The two problems are solved simultaneously through the modification of the control cost function that includes an additional term related to the economic objective. The optimizing MPC is based on a quadratic program (QP) as the conventional MPC and can be solved with the available QP solvers. The method was implemented in an industrial distillation system, and the results show that the approach is efficient and can be used, in several practical cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work aims to characterize corrosion products formed on copper samples exposed to synthetic rainwater of Rio Janeiro and Sao Paulo. XRD and XPS were employed to determine their composition, while electrochemical techniques were used to evaluate their protective properties. XRD and XPS indicated the thickening of the corrosion layer with time. Electrochemical results showed that the protectiveness of the corrosion layer depends on the solution composition. Based on our findings a corrosion mechanism for copper in simulated rainwater is proposed where the role of NH(4)(+) ions in the cuprite layer partial regeneration is taken into account. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A great deal of attention in the supply chain management literature is devoted to study material and demand information flows and their coordination. But in many situations, supply chains may convey information from different nature, they may be an important channel companies have to deliver knowledge, or specifically, technical information to the market. This paper studies the technical flow and highlights its particular requirements. Drawing upon a qualitative field research, it studies pharmaceutical companies, since those companies face a very specific challenge: consumers do not have discretion over their choices, ethical drugs must be prescribed by physicians to be bought and used by final consumers. Technical information flow is rich, and must be redundant and early delivered at multiple points. Thus, apart from the regular material channel where products and order information flow, those companies build a specialized information channel, developed to communicate to those who need it to create demand. Conclusions can be extended to supply chains where products and services are complex and decision makers must be clearly informed about technology-related information. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The paper proposes a methodology and design rules for organisational structures facing higher necessity of rapidly reconfigure themselves to cope with unpredictable situations-new markets, new products, changing mix of production, problems in production process or flows etc. It implies changing and often conflictive criteria for production goals and for the allocation of work. The methodology was developed based on a large field action research and consulting. Their basis is the design of auto-reconfigurable working groups-or groups with variable geometry, depending on the events to face. (C) 2009 Elsevier B.V. All rights reserved.