34 resultados para Vila Galé hotels
Resumo:
Debaryomyces hansenii cells cultivated on galactose produced extracellular and intracellular alpha-galactosidases, which showed 54.5 and 54.8 kDa molecular mass (MALDI-TOF), 60 and 61 kDa (SDS-PAGE) and 5.15 and 4.15 pI values, respectively. The extracellular and intracellular deglycosylated forms presented 36 and 40 kDa molecular mass, with 40 and 34% carbohydrate content, respectively. The N-terminal sequences of the alpha-galactosidases were identical. Intracellular alpha-galactosidase showed smaller thermostability when compared to the extracellular enzyme. D. hansenii UFV-1 extracellular alpha-galactosidase presented higher k(cat) than the intracellular enzyme (7.16 vs 3.29 s(-1), respectively) for the p-nitrophenyl-alpha-D-galactopyranoside substrate. The K(m) for hydrolysis of pNP alpha Gal, melibiose, stachyose, and raffinose were 0.32, 2.12, 10.8, and 32.8 mM, respectively. The intracellular enzyme was acompetitively inhibited by galactose (K(i) = 0.70 mM), and it was inactivated by Cu(II) and Ag(I). Enzyme incubation with soy milk for 6 h at 55 degrees C reduced stachyose and raffinose amounts by 100 and 73%, respectively.
Resumo:
This study described a 23-year experience in the treatment of children with pilocytic astrocytomas (piloA) with the aim of identifying putative clinical, histopathological, and/or immunohistochemical features that could be related to the outcome of these patients. Clinical data of 31 patients under 18 years of age with piloA were obtained from 1984 to 2006. The mean age at the time of surgery was 7.8 +/- 4.2 years (1 to 17 years), and the mean follow-up was 5.7 +/- 5.4 years (1 to 20 years). The most common site of tumor formation was the cerebellum (17), followed by brainstem (4), optic chiasmatic hypothalamic region (4), cerebral hemisphere (3), cervical spinal cord (2), and optic nerve (1). Gross total resection (GTR) was achieved in 23 (74.1%), mainly in those with tumors located in the cerebellum and cerebral hemispheres (P = 0.02). The global mortality rate was 6.4%. Nine patients were reoperated. Rosenthal fibers, eosinophilic granular bodies, microvascular proliferation, and lymphocytic infiltration were observed in most cases. The mean Ki-67LI was 4.4 +/- 4.5%. In all cases, Gal-3 expression in tumor cells was observed with variable staining pattern. Aside from GTR, no other clinical, histopathological, or immunohistochemical features were found to be related to the prognosis. We postulate that strict follow-up is recommended if piloA is associated with high mitotic activity/Ki67-LI, or if GTR cannot be achieved at surgery. Tumor recurrence or progression of the residual lesion should be strictly observed. In some aspects, childhood piloA remains an enigmatic tumor.
Resumo:
Muscle degenerative diseases such as Duchenne Muscular Dystrophy are incurable and treatment options are still restrained. Understanding the mechanisms and factors responsible for muscle degeneration and regeneration will facilitate the development of novel therapeutics. Several recent studies have demonstrated that Galectin-1 (Gal-1), a carbohydrate-binding protein, induces myoblast differentiation and fusion in vitro, suggesting a potential role for this mammalian lectin in muscle regenerative processes in vivo. However, the expression and localization of Gal-1 in vivo during muscle injury and repair are unclear. We report the expression and localization of Gal-1 during degenerative-regenerative processes in vivo using two models of muscular dystrophy and muscle injury. Gal-1 expression increased significantly during muscle degeneration in the murine mdx and in the canine Golden Retriever Muscular Dystrophy animal models. Compulsory exercise of mdx mouse, which intensifies degeneration, also resulted in sustained Gal-1 levels. Furthermore, muscle injury of wild-type C57BL/6 mice, induced by BaCl(2) treatment, also resulted in a marked increase in Gal-1 levels. Increased Gal-1 levels appeared to localize both inside and outside the muscle fibers with significant extracellular Gal-1 colocalized with infiltrating CD45(+) leukocytes. By contrast, regenerating muscle tissue showed a marked decrease in Gal-1 to baseline levels. These results demonstrate significant regulation of Gal-1 expression in vivo and suggest a potential role for Gal-1 in muscle homeostasis and repair.
Resumo:
Galectin-3 (Gal-3) is a glycan-binding protein highly expressed in several tumors, including brain neoplasms. This protein has been demonstrated to be correlated with adverse prognosis in some tumor types. However, the role of Gal-3 in pediatric posterior fossa tumors (PPFTs) has not yet been fully addressed. The goals of this study were to evaluate Gal-3 expression in a series of PPFTs and verify whether this expression is related to patient outcome. Gal-3 expression was analyzed by immunohistochemistry in 42 cases of surgically resected primary PPFTs. Surgeries were performed in our institution from January 2003 to December 2006. Tumor samples consisted of 21 pilocytic astrocytomas (PAs), 13 medulloblastomas, 4 ependymomas, 2 diffuse cerebellar astrocytomas, and 2 atypical teratoid/rhabdoid tumors (AT/RTs). All PAs and ependymomas strongly showed Gal-3 expression, whereas no immunostaining was observed in medulloblastomas and diffuse astrocytomas. In AT/RTs, Gal-3 expression was conspicuous but heterogeneous, being mainly observed in rhabdoid cells. Concerning the Gal-3 expressing tumors, no relationship was observed between the degree of expression and patient survival. Gal-3 was strongly expressed in reactive astrocytes, normal endothelial cells, and macrophages in the adjacent non-neoplastic brain parenchyma. Interestingly, the endothelial cells in the tumor bulk of PAs lacked Gal-3 expression. Gal-3 is differentially expressed in PPFTs, but its expression shows no correlation with patient outcome. However, the evaluation of Gal-3 is helpful in establishing a differential diagnosis among PPFTs, especially between PAs and diffuse astrocytomas, and in some circumstances between medulloblastomas and AT/RTs.