81 resultados para Ventricular Dysfunction, Left
Resumo:
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+)) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Study design: This is cross-sectional study. Objectives: The aim of this study is to investigate the cardiac structure and function of subjects with spinal cord injury (SCI) and the impact of metabolic, hemodynamic and inflammatory factors on these parameters. Setting: Sao Paulo, Brazil. Methods: Sixty-five nondiabetic, nonhypertensive, sedentary, nonsmoker men (34 with SCI and 31 healthy subjects) were evaluated by medical history, anthropometry, laboratory tests, analysis of hemodynamic and inflammatory parameters and echocardiography. Results: Subjects with SCI had lower systolic blood pressure and higher levels of C-reactive protein and tumor necrosis factor receptors than the healthy ones. Echocardiography data showed that the SCI group presented similar left ventricular (LV) structural and systolic parameters, but lower initial diastolic velocity (Em) (9.2 +/- 0.5 vs 12.3 +/- 0.5 cm s(-1); P<0.001) and higher peak early inflow velocity (E)/Em ratio (7.7 +/- 0.5 vs 6.1 +/- 0.3; P = 0.009) compared with the able-bodied group, even after adjustment for systolic blood pressure and C-reactive protein levels. Furthermore, injured subjects with E/Em >8 had lower peak spectral longitudinal contraction (Sm) (9.0 +/- 0.7 vs 11.6 +/- 0.4cm s(-1); P<0.001) and cardiac output (4.2 +/- 0.2 vs 5.0 +/- 0.21 min(-1); P = 0.029), as well as higher relative wall thickness (0.38 +/- 0.01 vs 0.35 +/- 0.01; P = 0.005), than individuals with SCI with E/Em<8, but similar age, body mass index, blood pressure, injury level, metabolic parameters and inflammatory marker levels. Conclusion: Subjects with SCI presented impaired LV diastolic function in comparison with able-bodied ones. Moreover, worse LV diastolic function was associated with a pattern of LV concentric remodeling and subclinical decreases in systolic function among injured subjects. Overall, these findings might contribute to explain the increased cardiovascular risk reported for individuals with SCI. Spinal Cord (2011) 49, 65-69; doi: 10.1038/sc.2010.88; published online 27 July 2010
Resumo:
A new digital computer mock circulatory system has been developed in order to replicate the physiologic and pathophysiologic characteristics of the human cardiovascular system. The computer performs the acquisition of pressure, flow, and temperature in an open loop system. A computer program has been developed in Labview programing environment to evaluate all these physical parameters. The acquisition system was composed of pressure, flow, and temperature sensors and also signal conditioning modules. In this study, some results of flow, cardiac frequencies, pressures, and temperature were evaluated according to physiologic ventricular states. The results were compared with literature data. In further works, performance investigations will be conducted on a ventricular assist device and endoprosthesis. Also, this device should allow for evaluation of several kinds of vascular diseases.
Resumo:
In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of Sao Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.
Resumo:
(99m)Tc-MIBI gated myocardial scintigraphy (GMS) evaluates myocyte integrity and perfusion, left ventricular (LV) dyssynchrony and function. Cardiac resynchronization therapy (CRT) may improve the clinical symptoms of heart failure (HF), but its benefits for LV function are less pronounced. We assessed whether changes in myocardial (99m)Tc-MIBI uptake after CRT are related to improvement in clinical symptoms, LV synchrony and performance, and whether GMS adds information for patient selection for CRT. A group of 30 patients with severe HF were prospectively studied before and 3 months after CRT. Variables analysed were HF functional class, QRS duration, LV ejection fraction (LVEF) by echocardiography, myocardial (99m)Tc-MIBI uptake, LV end-diastolic volume (EDV) and end-systolic volume (ESV), phase analysis LV dyssynchrony indices, and regional motion by GMS. After CRT, patients were divided into two groups according to improvement in LVEF: group 1 (12 patients) with increase in LVEF of 5 or more points, and group 2 (18 patients) without a significant increase. After CRT, both groups showed a significant improvement in HF functional class, reduced QRS width and increased septal wall (99m)Tc-MIBI uptake. Only group 1 showed favourable changes in EDV, ESV, LV dyssynchrony indices, and regional motion. Before CRT, EDV, and ESV were lower in group 1 than in group 2. Anterior and inferior wall (99m)Tc-MIBI uptakes were higher in group 1 than in group 2 (p < 0.05). EDV was the only independent predictor of an increase in LVEF (p=0.01). The optimal EDV cut-off point was 315 ml (sensitivity 89%, specificity 94%). The evaluation of EDV by GMS added information on patient selection for CRT. After CRT, LVEF increase occurred in hearts less dilated and with more normal (99m)Tc-MIBI uptake.
Resumo:
To determine reference values for tissue Doppler imaging (TDI) and pulsed Doppler echocardiography for left ventricular diastolic function analysis in a healthy Brazilian adult population. Observations were based on a randomly selected healthy population from the city of Vitoria, Espirito Santo, Brazil. Healthy volunteers (n = 275, 61.7% women) without prior histories of cardiovascular disease underwent transthoracic echocardiography. We analyzed 175 individuals by TDI and evaluated mitral annulus E`- and A`-waves from the septum (S) and lateral wall (L) to calculate E`/A` ratios. Using pulsed Doppler echocardiography, we further analyzed the mitral E- and A-waves, E/A ratios, isovolumetric relaxation times (IRTs), and deceleration times (DTs) of 275 individuals. Pulsed Doppler mitral inflow mean values for men were as follows: E-wave: 71 +/- 16 cm/sec, A-wave: 68 +/- 15 cm/sec, IRT: 74.8 +/- 9.2 ms, DT: 206 +/- 32.3 ms, E/A ratio: 1.1 +/- 0.3. Pulsed Doppler mitral inflow mean values for women were as follows: E-wave: 76 +/- 17, A-wave: 69 +/- 14 cm/sec, IRT: 71.2 +/- 10.5 ms, DT: 197 +/- 33.3 ms, E/A ratio: 1.1 +/- 0.3. IRT and DT values were higher in men than in women (P = 0.04 and P = 0.007, respectively). TDI values in men were as follows: E`S: 11 +/- 3 cm/sec, A`S: 13 +/- 2 cm/sec, E`S/A`S: 0.89 +/- 0.2, E`L: 14 +/- 3 cm/sec, A`L: 14 +/- 2 cm/sec, E`L/A`L: 1.1 +/- 0.4. E-wave/ E`S ratio: 6.9 +/- 2.2; E-wave / E`L ratio: 4.9 +/- 1.7. In this study, we determined pulsed Doppler and TDI derived parameters for left ventricular diastolic function in a large sample of healthy Brazilian adults. (Echocardiography 2010;27:777-782).
Resumo:
In this study, we analyzed whether transplantation of cardiac fibroblasts (CFs) expressing vascular endothelial growth factor (VEGF) mitigates cardiac dysfunction after myocardial infarction (MI) in rats. First, we observed that the transgene expression lasts longer (45 vs 7 days) when fibroblasts are used as vectors compared with myoblasts. In a preventive protocol, induction of cardiac neovascularization accompanied by reduction in myocardial scar area was observed when cell transplantation was performed 1 week before ischemia/reperfusion and the animals analyzed 3 weeks later. Finally, the therapeutic efficacy of this approach was tested injecting cells in a fibrin biopolymer, to increase cardiac retention, 24 h post-MI. After 4 weeks, an increase in neovascularization and a decrease in myocardial collagen were observed only in rats that received cells expressing VEGF. Basal indirect or direct hemodynamic measurements showed no differences among the groups whereas under pharmacological stress, only the group that received cells expressing VEGF showed a significant reduction in end-diastolic pressure and improvement in stroke volume and cardiac work. These results indicate that transplantation of CFs expressing VEGF using fibrin biopolymer induces neovascularization and attenuates left ventricle fibrosis and cardiac dysfunction in ischemic heart. Gene Therapy (2010) 17, 305-314; doi:10.1038/gt.2009.146; published online 10 December 2009
Resumo:
Left ventricular hypertrophy is an important predictor of cardiovascular risk and sudden death. This study explored the ability of four obesity indexes (body mass index, waist circumference, waist-hip ratio and waist-stature ratio) to identify left ventricular hypertrophy. A sample of the general population (n=682; 43.5% men) was surveyed to assess cardiovascular risk factors. Biochemical, anthropometric and blood pressure values were obtained in a clinic visit according to standard methods. Left ventricular mass was obtained from transthoracic echocardiogram. Left ventricular hypertrophy was defined using population-specific cutoff values for left ventricular mass indexed to height(2.7). The waist-stature ratio showed the strongest positive association with left ventricular mass. This correlation was stronger in women, even after controlling for age and systolic blood pressure. By multivariate analysis, the main predictors of left ventricular hypertrophy were waist-stature ratio (23%), systolic blood pressure (9%) and age (2%) in men, and waist-stature ratio (40%), age (6%) and systolic blood pressure (2%) in women. Receiver-operating characteristic curves showed the optimal cutoff values of the different anthropometric indexes associated with left ventricular hypertrophy. The waist-stature ratio was a significantly better predictor than the other indexes (except for the waist-hip ratio), independent of gender. It is noteworthy that a waist-stature ratio cutoff of 0.56 showed the highest combined sensitivity and specificity to detect left ventricular hypertrophy. Abdominal obesity identified by waist-stature ratio instead of overall obesity identified by body mass index is the simplest and best obesity index for assessing the risk of left ventricular hypertrophy, is a better predictor in women and has an optimal cutoff ratio of 0.56. Hypertension Research (2010) 33, 83-87; doi: 10.1038/hr.2009.188; published online 13 November 2009
Resumo:
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).
Resumo:
Background: Insulin resistance and obesity are recognized as left ventricular (LV) mass determinants independent of blood pressure (BP). Prevalence of LV hypertrophy (LVH) and the relationship between LV mass to body composition and metabolic variables were evaluated in normotensive individuals as participants of a population-based study. Methods: LV mass was measured using the second harmonic image by M-mode 2D guided echocardiography in 326 normotensive subjects (mean 47 +/- 9.4 years). Fasting serum lipids and glucose, BP, body composition and waist circumference (WC) were recorded during a clinic visit. Results: Applying a normalization criterion not related to body weight (g/height raised to the power 2.7) and the cut-off points of 47.7 (men) and 46.6 g/m(2.7) (women), LVH was found in 7.9% of the sample. Univariate analysis showed LV mass (g/m(2.7)) related to age, body mass index (BMI), WC, fat and lean body mass, systolic and diastolic BP, and metabolic variables (cholesterol, HDL-c, triglycerides and glucose). In multivariate analysis only BMI and age-adjusted systolic BP remained as independent predictors of LV mass, explaining 31% and 5% of its variability. Removing BMI from the model, WC, age-adjusted systolic BP and lean mass remained independent predictors, explaining 25.0%, 4.0% and 1.5% of LV mass variability, respectively. After sex stratification, LV mass predictors were WC (8%) and systolic BP (5%) in men and WC (36%) and systolic BP (3%) in women. Conclusion: BMI in general and particularly increased abdominal adiposity (WC as surrogate) seems to account for most of LV mass increase in normotensive individuals, mainly in women. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Color Doppler myocardial imaging (CDMI) allows the calculation of local longitudinal or radial strain rate (SR) and strain (epsilon). The aims of this study were to determine the feasibility and reproducibility of longitudinal and radial SR and epsilon in neonates during the first hours of life and to establish reference values. Methods: Data were obtained from 55 healthy neonates (29 male; mean age, 20 +/- 14 hours; mean birth weight, 3,174 +/- 374 g). Apical and parasternal views quantified regional longitudinal and radial SR and epsilon in differing ventricular wall segments. Values at peak systole, early diastole, and late diastole were calculated from the extracted curves. CDMI data acquired at 300 +/- 50 frames/s were analyzed offline. Three consecutive cardiac cycles were measured during normal respiration. The timing of specific systolic or diastolic regional events was determined. Multiple comparisons between walls and segments were made. Results: Left ventricular (LV) longitudinal deformation showed basal differences compared with apical segments within one specific wall. Right ventricular (RV) longitudinal deformation was not homogeneous, with significant differences between basal and apical segments. Longitudinal 3 values were higher in the RV free basal and middle wall segments compared with the left ventricle. In the RV free wall apical segment, longitudinal SR and 3 were maximal. LV systolic SR and epsilon values were higher radially compared with longitudinally (radial peak systolic SR midportion, 2.9 +/- 0.6 s(-1); radial peak systolic epsilon 53.8 +/- 19%; longitudinal peak systolic SR midportion, -1.8 +/- 0.5 s(-1); longitudinal peak systolic epsilon, -24.8 +/- 3%; P < .01). Longitudinal systolic epsilon and SR interobserver variability values were 1.2% and 0.7%, respectively. Conclusion: Ultrasound-based SR and 3 imaging is a practical and reproducible clinical technique in neonates, allowing the calculation of regional longitudinal and radial deformation in RV and LV segments. These regional SR and epsilon indices represent new, noninvasive parameters that can quantify normal neonate regional cardiac function. Independent from visual interpretation, they can be used as reference values for diagnosis in ill neonates. (J Am Soc Echocardiogr 2009;22:369-375.)
Resumo:
Background Left atrial volume indexed (LAVI) has been reported as a predictor of cardiovascular events. We sought to determine the prognostic value of LAVI for predicting the outcome of patients who underwent dobutamine stress echocardiography (DSE) for known or suspected coronary artery disease (CAD). Methods From January 2000 to July 2005, we studied 981 patients who underwent DSE and off-line measurements of LAVI. The value of DSE over clinical and LAVI data was examined using a stepwise log-rank test. Results During a median follow-up of 24 months, 56 (6%) events occurred. By univariate analysis, predictors of events were male sex, diabetes mellitus, previous myocardial infarction, left ventricular ejection fraction (LVEF), left atrial diameter indexed, LAVI, and abnormal DSE. By multivariate analysis, independent predictors were LVEF (relative risk [RR] = 0.98, 95% CI 0.95-1.00), LAVI (RR = 1.04, 95% CI 1.02-1.05), and abnormal DSE (RR = 2.70, 95% CI 1.28-5.69). In an incremental multivariate model, LAVI was additional to clinical data for predicting events (chi(2) 36.8, P < .001). The addition of DSE to clinical and LAVI yielded incremental information (chi(2) 55.3, P < .001). The 3-year event-free survival in patients with normal DSE and LAVI <= 33 mL/m(2) was 96%; with abnormal DSE and LAVI <= 33 mL/m(2), 91%; with normal DSE and LAVI >34 mL/m(2), 83%; and with abnormal DSE and LAVI >34 mL/m(2) 51%. Conclusion Left atrial volume indexed provides independent prognostic information in patients who underwent DSE for known or suspected CAD. Among patients with normal DSE, those with larger LAVI had worse outcome, and among patients with abnormal DSE, LAVI was still predictive. (Am Heart J 2008; 156:1110-6.)
Resumo:
Background and Aim: It is unclear to what extent diabetes modulates the ageing-related adaptations of cardiac geometry and function. Methods and Results: We examined 1005 adults, aged 25-74 years, from a population-based survey at baseline in 1994/5 and at follow-up in 2004/5. We compared persistently non-diabetic individuals (ND; no diabetes at baseline and at follow-up, n = 833) with incident (ID; non-diabetic at baseline and diabetic at follow-up, n = 36) and with prevalent diabetics (PD; diabetes at baseline and follow-up examination, n = 21). Left ventricular (LV) geometry and function were evaluated by echocardiography. Statistical analyses were performed with multivariate linear regression models. Over ten years the PD group displayed a significantly stronger relative increase of LV mass (+9.34% vs. +23.7%) that was mediated by a more pronounced increase of LV end-diastolic diameter (+0% vs. +6.95%) compared to the ND group. In parallel, LA diameter increased (+4.50% vs. +12.7%), whereas ejection fraction decreased (+3.02% vs. -4.92%) more significantly in the PD group. Moreover, at the follow-up examination the PD and ID groups showed a significantly worse diastolic function, indicated by a higher E/EM ratio compared with the ND group (11.6 and 11.8 vs. 9.79, respectively). Conclusions: Long-standing diabetes was associated with an acceleration of age-related changes of left ventricular geometry accumulating in an eccentric remodelling of the left ventricle. Likewise, echocardiographic measures of systolic and diastolic ventricular function deteriorated more rapidly in individuals with diabetes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objectives This prospective study evaluated the association of obesity and hypertension with left atrial (LA) volume over 10 years. Background Although left atrial enlargement (LAE) is an independent risk factor for atrial fibrillation, stroke, and death, little information is available about determinants of LA size in the general population. Methods Participants (1,212 men and women, age 25 to 74 years) originated from a sex-and age-stratified random sample of German residents of the Augsburg area (MONICA S3). Left atrial volume was determined by standardized echocardiography at baseline and again after 10 years. Left atrial volume was indexed to body height (iLA). Left atrial enlargement was defined as iLA >= 35.7 and >= 33.7 ml/m in men and women, respectively. Results At baseline, the prevalence of LAE was 9.8%. Both obesity and hypertension were independent predictors of LAE, obesity (odds ratio [OR]: 2.4; p < 0.001) being numerically stronger than hypertension (OR: 2.2; p < 0.001). Adjusted mean values for iLA were significantly lower in normal-weight hypertensive patients (25.4 ml/m) than in obese normotensive individuals (27.3 ml/m; p = 0.016). The highest iLA was found in the obese hypertensive subgroup (30.0 ml/m; p < 0.001 vs. all other groups). This group also presented with the highest increase in iLA (+6.0 ml/m) and the highest incidence (31.6%) of LAE upon follow-up. Conclusions In the general population, obesity appears to be the most important risk factor for LAE. Given the increasing prevalence of obesity, early interventions, especially in young obese individuals, are essential to prevent premature onset of cardiac remodeling at the atrial level. (J Am Coll Cardiol 2009; 54: 1982-9) (C) 2009 by the American College of Cardiology Foundation
Resumo:
Objective: Our objective was to evaluate the association of chronic kidney dysfunction in patients with multi-vessel chronic coronary artery disease, preserved left ventricular function, and the possible interaction between received treatment and cardiovascular events. Methods: The glomerular filtration rate was determined at baseline on 611 patients who were randomized into three treatment groups: medical treatment, percutaneous coronary intervention, and coronary artery bypass surgery. Incidence of myocardial infarction, angina requiring a new revascularization procedure, and death were analyzed during 5 years in each group. Results: Of 611 patients, 112 (18%) were classified as having normal renal function, 349 (57%) were classified as having mild dysfunction, and 150 (25%) were classified as having moderate dysfunction. There were significant differences among the cumulative overall mortality curves among the three renal function groups. Death was observed more frequently in the moderate dysfunction group than the other two groups (P < .001). Interestingly, in patients with mild chronic kidney dysfunction, we observed that coronary artery bypass treatment presented a statistically higher percentage of event-free survival and lower percentage of mortality than did percutaneous coronary intervention or medical treatment Conclusions: Our results confirm that coronary artery disease accompanied by chronic kidney dysfunction has a worse prognosis, regardless of the therapeutic strategy for coronary artery disease, when renal function is at least mildly impaired. Additionally, our data suggest that the different treatment strategies available for stable coronary artery disease may have differential beneficial effects according to the range of glomerular filtration rate strata.