106 resultados para Tolerance mechanisms
Resumo:
Objective: To analyse the effects of strength training (ST) in walking capacity in patients with intermittent claudication (IC) compared with walking training (WT) effects. Methods. Thirty patients with IC were randomized into ST and WT. Both groups trained twice a week for 12 weeks at the same rate of perceived exertion. ST consisted of three sets of 10 repetitions of whole body exercises. WT consisted of 15 bouts of 2-minute walking. Before and after the training program walking capacity, peak VO(2), VO(2) at the first stage of treadmill test, ankle brachial index, ischemic window, and knee extension strength were measured. Results: ST improved initial claudication distance (358 +/- 224 vs 504 +/- 276 meters; P < .01), total walking distance (618 +/- 282 to 775 +/- 334 meters; P < .01), VO(2), at the first stage of treadmill test (9.7 +/- 2.6 vs 8.1 +/- 1.7 mL . kg(-1) . minute; P < .01), ischemic window (0.81 +/- 1.16 vs 0.43 +/- 0.47 mm Hg minute meters(-1); P = .04), and knee extension strength (19 +/- 9 vs 21 +/- 8 kg and 21 +/- 9 vs 23 +/- 9; P < .01). Strength increases correlated with the increase in initial claudication distance (r = 0.64; P = .01.) and with the decrease ill VO(2) measured at the first stage of the treadmill test (r = -0.52; P = .04 and r = -0.55; P = .03). Adaptations following ST were similar to the ones observed after WT; however, patients reported lower pain during ST than WT (P < .01). Conclusion: ST improves functional limitation similarly to WT but it produces lower pain, suggesting that this type of exercise could be useful and should be considered in patients with IC. (J Vase Surg 2010;51:89-95.)
Resumo:
Recent findings have indicated that creatine supplementation may affect glucose metabolism. This study aimed to examine the effects of creatine supplementation, combined with aerobic training, on glucose tolerance in sedentary healthy male. Subjects (n = 22) were randomly divided in two groups and were allocated to receive treatment with either creatine (CT) (similar to 10g .day over three months) or placebo (PT) (dextrose). Administration of treatments was double blind. Both groups underwent moderate aerobic training. An oral glucose tolerance test (OGTT) was performed and both fasting plasma insulin and the homeostasis model assessment (HOMA) index were assessed at the start, and after four, eight and twelve weeks. CT demonstrated significant decrease in OGTT area under the curve compared to PT (P = 0.034). There were no differences between groups or over time in fasting insulin or HOMA. The results suggest that creatine supplementation, combined with aerobic training, can improve glucose tolerance but does not affect insulin sensitivity, and may warrant further investigation with diabetic subjects.
Resumo:
The present study investigated the role of ROS (reactive oxygen species) and COX (cyclooxygenase) in ethanol-induced contraction and elevation of [Ca(2+)](i) (intracellular [Ca(2+)]). Vascular reactivity experiments, using standard muscle bath procedures, showed that ethanol (1-800 mmol/l) induced contraction in endothelium-intact (EC(50): 306 +/- 34 mmol/l) and endothelium-denuded (EC(50): 180 +/- 40 mmol/l) rat aortic rings. Endothelial removal enhanced ethanol-induced contraction. Preincubation of intact rings with L-NAME [N(G)-nitro-L-arginine methyl ester; non-selective NOS (NO synthase) inhibitor, 100 mu mol/l], 7-nitroindazole [selective nNOS (neuronal NOS) inhibitor, 100 mu mol/l], oxyhaemoglobin (NO scavenger, 10 mu mol/l) and ODQ (selective inhibitor of guanylate cyclase enzyme, 1 mu mol/l) increased ethanol-induced contraction. Tiron [O(2)(-) (superoxide anion) scavenger, 1 mmol/l] and catalase (H(2)O(2) scavenger, 300 units/ml) reduced ethanol-induced contraction to a similar extent in both endothelium-intact and denuded rings. Similarly, indomethacin (non-selective COX inhibitor, 10 mu mol/l), SC560 (selective COX- I inhibitor, 1 mu mol/l), AH6809 [PGF(2 alpha) (prostaglandin F(2 alpha))] receptor antagonist, 10 mu mol/l] or SQ29584 [PGH(2)(prostaglandin H(2))/TXA(2) (thromboxane A(2)) receptor antagonist, 3 mu mol/l] inhibited ethanol-induced contraction in aortic rings with and without intact endothelium. In cultured aortic VSMCs (vascular smooth muscle cells), ethanol stimulated generation of O(2)(-) and H(2)O(2). Ethanol induced a transient increase in [Ca(2+)](i), which was significantly inhibited in VSMCs pre-exposed to tiron or indomethacin. Our data suggest that ethanol induces vasoconstriction via redox-sensitive and COX-dependent pathways, probably through direct effects on ROS production and Ca(2+) signalling. These findings identify putative molecular mechanisms whereby ethanol, at high concentrations, influences vascular reactivity. Whether similar phenomena occur in vivo at lower concentrations of ethanol remains unclear.
Resumo:
The dynamic behavior of composite laminates is very complex because there are many concurrent phenomena during composite laminate failure under impact load. Fiber breakage, delaminations, matrix cracking, plastic deformations due to contact and large displacements are some effects which should be considered when a structure made from composite material is impacted by a foreign object. Thus, an investigation of the low velocity impact on laminated composite thin disks of epoxy resin reinforced by carbon fiber is presented. The influence of stacking sequence and energy impact was investigated using load-time histories, displacement-time histories and energy-time histories as well as images from NDE. Indentation tests results were compared to dynamic results, verifying the inertia effects when thin composite laminate was impacted by foreign object with low velocity. Finite element analysis (FEA) was developed, using Hill`s model and material models implemented by UMAT (User Material Subroutine) into software ABAQUS (TM), in order to simulate the failure mechanisms under indentation tests. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An experimental testing program was undertaken to investigate failure mechanisms induced by the active movement of a deep rectangular trapdoor underlying a granular soil. Reduced-scale models were tested under normal gravity as well as under an increased gravitational field using a centrifuge facility. Some models were used to evaluate the performance of both flexible and rigid pipes undergoing a localized loss of support. Failure mechanisms in the longitudinal direction of the models were characterized by a single, well-defined failure surface that developed within the limits of the trapdoor. However, failure mechanisms in the transverse direction of the models were characterized by multiple failure surfaces extending outside the limits of the trapdoor. Significant dilation of the soil located immediately above the trapdoor was identified in the failure of the models. The pattern of the failure mechanisms was found to be affected by the stress level and backfill density. Higher stress levels were found to lead to well-developed failure zones. The influence of backfill density was found to be more relevant in models involving flexible pipes. Pipes embedded within loose backfill were severely damaged after loss of support, while pipes embedded in dense backfill experienced negligible deformations. These results indicate that damage to pipelines caused by ground loss of support can be significantly minimized by controlling the compaction of the fill.
Resumo:
Wireless Sensor Networks (WSNs) have a vast field of applications, including deployment in hostile environments. Thus, the adoption of security mechanisms is fundamental. However, the extremely constrained nature of sensors and the potentially dynamic behavior of WSNs hinder the use of key management mechanisms commonly applied in modern networks. For this reason, many lightweight key management solutions have been proposed to overcome these constraints. In this paper, we review the state of the art of these solutions and evaluate them based on metrics adequate for WSNs. We focus on pre-distribution schemes well-adapted for homogeneous networks (since this is a more general network organization), thus identifying generic features that can improve some of these metrics. We also discuss some challenges in the area and future research directions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
AISI H13 tool steel discs were pulsed plasma minded during different times at a constant temperature of 400 degrees C Wear tests were performed in order to study the acting wear mechanisms The samples were characterized by X-ray diffraction, scanning electron microscopy and hardness measurements The results showed that longer nitriding times reduce the wear volumes. The friction coefficient was 0.20 +/- 0 05 for all tested conditions and depends strongly on the presence of debris After wear tests, the wear tracks were characterized by optical and scanning electron microscopy and the wear mechanisms were observed to change from low cycle fatigue or plastic shakedown to long cycle fatigue These mechanisms were correlated to the microstructure and hardness of the nitrided layer (C) 2010 Elsevier B V All rights reserved
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Specimens of a UNS S31803 steel were submitted to high temperature gas nitriding and then to vibratory pitting wear tests. Nitrided samples displayed fully austenitic microstructures and 0.9 wt. % nitrogen contents. Prior to pitting tests, sample texture was characterized by electron backscattering diffraction, EBSD. Later on, the samples were tested in a vibratory pit testing equipment using distilled water Pitting tests were periodically interrupted to evaluate mass loss and to characterize the surface wear by SEM observations. At earlier pit erosion, stages intense and highly heterogeneous plastic deformation inside individual grains was observed. Later on, after the incubation period, mass loss by debris detachment was observed. Initial debris micro fracturing was addressed to low cycle fatigue. Damage started at both sites, inside the grains and grain boundaries. The twin boundaries were the most prone to mass-loss incubation. Grains with (101) planes oriented near parallel to the sample surface displayed higher wear resistance than grains with other textures. This was attributed to lower resolved stresses for plastic deformation inside the grains with (101)
Resumo:
P>The Arabidopsis thylakoid FtsH protease complex is composed of FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. Type A and type B subunits display a high degree of sequence identity throughout their mature domains, but no similarity in their amino-terminal targeting peptide regions. In chloroplast import assays, FtsH2 and FtsH5 were imported and subsequently integrated into thylakoids by a two-step processing mechanism that resulted in an amino-proximal lumenal domain, a single transmembrane anchor, and a carboxyl proximal stromal domain. FtsH2 integration into washed thylakoids was entirely dependent on the proton gradient, whereas FtsH5 integration was dependent on NTPs, suggesting their integration by Tat and Sec pathways, respectively. This finding was corroborated by in organello competition and by antibody inhibition experiments. A series of constructs were made in order to understand the molecular basis for different integration pathways. The amino proximal domains through the transmembrane anchors were sufficient for proper integration as demonstrated with carboxyl-truncated versions of FtsH2 and FtsH5. The mature FtsH2 protein was found to be incompatible with the Sec machinery as determined with targeting peptide-swapping experiments. Incompatibility does not appear to be determined by any specific element in the FtsH2 domain as no single domain was incompatible with Sec transport. This suggests an incompatible structure that requires the intact FtsH2. That the highly homologous type A and type B subunits of the same multimeric complex use different integration pathways is a striking example of the notion that membrane insertion pathways have evolved to accommodate structural features of their respective substrates.
Resumo:
Target region amplification polymorphism (TRAP) markers were used to estimate the genetic similarity (GS) among 53 sugarcane varieties and five species of the Saccharum complex. Seven fixed primers designed from candidate genes involved in sucrose metabolism and three from those involved in drought response metabolism were used in combination with three arbitrary primers. The clustering of the genotypes for sucrose metabolism and drought response were similar, but the GS based on Jaccard`s coefficient changed. The GS based on polymorphism in sucrose genes estimated in a set of 46 Brazilian varieties, all of which belong to the three Brazilian breeding programs, ranged from 0.52 to 0.9, and that based on drought data ranged from 0.44 to 0.95. The results suggest that genetic variability in the evaluated genes was lower in the sucrose metabolism genes than in the drought response metabolism ones.
Resumo:
Plant cell cultures are a suitable model system for investigation of the physiological mechanisms of tolerance to environmental stress. We have determined the effects of Cd (0.1 and 0.2 mM CdCl(2)) and Ni (0.075 and 0.75 mM NiCl(2)) on Nicotiana tabacum L. cv. Bright Yellow (TBY-2) cell suspension cultures over a 72-h period. Inhibition of growth, loss of cell viability and lipid peroxidation occurred, in general, only when the TBY-2 cells were grown at 0.2 mM CdCl(2) and at 0.75 mM NiCl(2). At 0.1 mM CdCl(2), a significant increase in growth was determined at the end of the experiment. Increases in the activities of all of the four enzymatic antioxidant defence systems tested, were induced by the two concentrations of Cd and Ni, but at different times during the period of metal exposure. Overall, the cellular antioxidant responses to Cd and Ni were similar and were apparently sufficient to avoid oxidative stress at the lower concentrations of Cd and Ni. The activities of glutathione reductase and glutathione S-transferase increased early but transiently, whereas the activities of catalase and guaiacol peroxidase increased in the latter half of the experimental period. Therefore it is likely that the metabolism of reduced glutathione was enhanced during the initial onset of the stress, while catalase and guaiacol-type peroxidase appeared to play a more important role in the antioxidant response once the stress became severe.
Resumo:
The effects of varying concentrations of cadmium (Cd) on the development of Lycopersicon esculentum cv. Micro-Tom (MT) plants were investigated after 40 days (vegetative growth) and 95 days (fruit production), corresponding to 20 days and 75 days of exposure to CdCl(2), respectively. Inhibition of growth was clearly observed in the leaves after 20 days and was greater after 75 days of growth in 1 mM CdCl(2), whereas the fruits exhibited reduced growth following the exposure to a concentration as low as 0.1 mM CdCl(2). Cd was shown to accumulate in the roots after 75 days of growth but was mainly translocated to the upper parts of the plants accumulating to high concentrations in the fruits. Lipid peroxidation was more pronounced in the roots even at 0.05 mM CdCl(2) after 75 days, whereas in leaves, there was a major increase after 20 days of exposure to 1 mM CdCl(2), but the fruit only exhibited a slight significant increase in lipid peroxidation in plants subjected to 1 mM CdCl(2) when compared with the control. Oxidative stress was also investigated by the analysis of four key antioxidant enzymes, which exhibited changes in response to the increasing concentrations of Cd tested. Catalase (EC 1.11.1.6) activity was shown to increase after 75 days of Cd treatment, but the major increases were observed at 0.1 and 0.2 mM CdCl(2), whereas guaiacol peroxidase (EC 1.11.1.7) did not vary significantly from the control in leaves and roots apart from specific changes at 0.5 and 1 mM CdCl(2). The other two enzymes tested, glutathione reductase (EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1), did not exhibit any significant changes in activity, apart from a slight decrease in SOD activity at concentrations above 0.2 mM CdCl(2). However, the most striking results were obtained when an extra treatment was used in which a set of plants was subjected to a stepwise increase in CdCl(2) from 0.05 to 1 mM, leading to tolerance of the Cd applied even at the final highest concentration of 1 mM. This apparent adaptation to the toxic effect of Cd was confirmed by biomass values being similar to the control, indicating a tolerance to Cd acquired by the MT plants.
Resumo:
Somatic hybridization is a biotechnology tool that can be used in citrus breeding programs to produce somatic hybrids with the complete genetic combination of both parents. The goal of this work was to test the reaction of citrus somatic hybrids that may be useful as rootstocks to trunk and root infections caused by Phytophthora nicotianae van Breda de Haan (P parasitica Dastur) and to citrus tristeza virus (CTV). The somatic hybrids evaluated were `Caipira` sweet orange (Citrus sinensis L. Osbeck) + `Rangpur` lime (C. limonia Osbeck), `Caipira` sweet orange + `Cleopatra` mandarin (C. reshni hort. ex Tanaka), `Caipira` sweet orange + `Volkamer` lemon (C. volkameriana V Ten. & Pasq.), `Caipira` sweet orange + rough lemon (C. jambhiri Lush.), `Cleopatra` mandarin + `Volkamer` lemon, `Cleopatra` mandarin + sour orange (C. aurantium L.), `Rangpur` lime + `Sunki` mandarin (C. sunki (Hayata) hort. ex Tanaka), `Ruby Blood` sweet orange (C. sinensis L. Osbeck) + `Volkamer` lemon, `Rohde Red` sweet orange (C. sinensis L. Osbeck) + `Volkamer` lemon, and `Valencia` sweet orange + Fortunella obovata hort. ex Tanaka. For P. nicotianae trunk and root infection assays, plants of the somatic hybrids, obtained from 9-month semi-hardwood cuttings, were evaluated and compared with diploid citrus rootstock cultivars after mycelia inoculation in the trunk or spore infestation in the substrate, respectively. `Cleopatra` mandarin + sour orange, `Rangpur` lime + `Sunki` mandarin, `Cleopatra` mandarin + `Volkamer` lemon, `Ruby Blood` sweet orange + `Volkamer` lemon, `Rohde Red` sweet orange + `Volkamer` lemon, and `Caipira` sweet orange + `Volkamer` lemon had less trunk rot occurrence, whereas the somatic hybrids `Cleopatra` mandarin + `Volkamer` lemon, `Cleopatra` mandarin + sour orange, `Caipira` sweet orange + `Volkamer` lemon, and `Caipira` sweet orange + `Rangpur` lime were tolerant to root rot. For CTV assays, plants of the somatic hybrids along with tolerant and intolerant rootstocks were budded with a mild strain CTV-infected or healthy `Valencia` sweet orange budwood. Differences in average scion shoot length indicated that the hybrids `Cleopatra` mandarin + sour orange and `Valencia` sweet orange + Fortunella obovata were intolerant to CTV (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Sourgrass is a perennial weed infesting annual and perennial crops in Brazil. Three biotypes (R1, R2, and R3) of sourgrass suspected to be glyphosate-resistant (R) and another one (S) from a natural area without glyphosate application, in Brazil, were tested for resistance to glyphosate based on screening, dose-response, and shikimic acid assays. Both screening and dose-response assays confirmed glyphosate resistance in the three sourgrass biotypes. Dose-response assay indicated a resistance factor of 2.3 for biotype RI and 3.9 for biotypes R2 and R3. The hypothesis of a glyphosate resistance was corroborated on the basis of shikimic acid accumulation, where the S biotype accumulated 3.3, 5.0, and 5.7 times more shikimic acid than biotypes R1, R2, and R3, respectively, 168 h after treatment with 157.50 g ae ha(-1) of glyphosate. There were no differences in contact angle of spray droplets on leaves and spray retention, indicating that differential capture of herbicide by leaves was not responsible for resistance in these biotypes. The results confirmed resistance of sourgrass to glyphosate in Brazil.