90 resultados para Telomere Homeostasis
Resumo:
Recent findings have indicated that creatine supplementation may affect glucose metabolism. This study aimed to examine the effects of creatine supplementation, combined with aerobic training, on glucose tolerance in sedentary healthy male. Subjects (n = 22) were randomly divided in two groups and were allocated to receive treatment with either creatine (CT) (similar to 10g .day over three months) or placebo (PT) (dextrose). Administration of treatments was double blind. Both groups underwent moderate aerobic training. An oral glucose tolerance test (OGTT) was performed and both fasting plasma insulin and the homeostasis model assessment (HOMA) index were assessed at the start, and after four, eight and twelve weeks. CT demonstrated significant decrease in OGTT area under the curve compared to PT (P = 0.034). There were no differences between groups or over time in fasting insulin or HOMA. The results suggest that creatine supplementation, combined with aerobic training, can improve glucose tolerance but does not affect insulin sensitivity, and may warrant further investigation with diabetic subjects.
Resumo:
Transcribed sequences have been suggested to be associated with the nuclear matrix, differing from non-transcribing sequences, which have been reported to be contained in DNA loops. However, although a dozen of genes have their expression level affected by aging, data on chromatin-nuclear matrix interactions under this physiological condition are still scarce. In the present study, liver imprints from young, adult and old mice were subjected to FISH (fluorescence in situ hybridization) for 45S rDNA and telomeric sequences, with or without a lysis treatment to produce extended chromatin fibres. There was an increased amount of 45S rDNA sequences located in DNA loops as the animals grow older, while telomeric sequences were always observed in DNA loops irrespective of the animal age. We assume that active rRNA genes associate with the nuclear matrix, while DNA loops contain silent sequences. Transcription of each 45S rDNA repeat unit is suggested to be dependent on its interaction with the nuclear matrix.
Resumo:
Background: The transcription factors SREBP1 and SCAP are involved in intracellular cholesterol homeostasis. Polymorphisms of these genes have been associated with variations on serum lipid levels and response to statins that are potent cholesterol-lowering drugs. We evaluated the effects of atorvastatin on SREBF1a and SCAP mRNA expression in peripheral blood mononuclear cells (PBMC) and a possible association with gene polymorphisms and lowering-cholesterol response. Methods: Fifty-nine hypercholesterolemic patients were treated with atorvastatin (10 mg/day for 4 weeks). Serum lipid profile and mRNA expression in PBMC were assessed before and after the treatment. Gene expression was quantified by real-time PCR using GAPD as endogenous reference and mRNA expression in HepG2 cells as calibrator. SREBF1 -36delG and SCAP A2386G polymorphisms were detected by PCR-RFLP. Results: Our results showed that transcription of SREBF1a and SCAP was coordinately regulated by atorvastatin (r=0.595, p<0.001), and that reduction in SCAP transcription was associated with the 2386AA genotype (p=0.019). Individuals who responded to atorvastatin with a downregulation of SCAP had also a lower triglyceride compared to those who responded to atorvastatin with an upregulation of SCAP. Conclusion: Atorvastatin has differential effects on SREBF1a and SCAP mRNA expression in PBMC that are associated with baseline transcription levels, triglycerides response to atorvastatin and SCAP A2386G polymorphism. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Sulfur-containing amino acids as methionine are the most vulnerable to oxidation by ROS, resulting in the formation of methionine sulfoxide [Met(O)] residues. This modification can be repaired by methionine sulfoxide reductases (Msr). Two distinct classes of these enzymes, MsrA and MsrB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Here. we describe the homologs of methionine sulfoxide reductases, msrA and msrB, in the filamentous fungus Aspergillus nidulans. Both single and double inactivation mutants were viable, but more sensitive to oxidative stress agents as hydrogen peroxide, paraquat, and ultraviolet light. These strains also accumulated more carbonylated proteins when exposed to hydrogen peroxide indicating that MsrA and MsrB are active players in the protection of the cellular proteins from oxidative stress damage. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
PGE(2), an arachidonic acid metabolite produced by various type of cells regulates a broad range of physiological activities in the endocrine, cardiovascular, gastrointestinal, and immune systems, and is involved in maintaining the local homeostasis. In the immune system, PGE(2) is mainly produced by APCs and it can suppress the Th1-mediated immune responses. The aim of this study was to develop PGE(2)-loaded biodegradable MS that prolong and sustain the in vivo release of this mediator. An o/w emulsion solvent extraction-evaporation method was chosen to prepare the MS. We determined their diameters, evaluated the in vitro release of PGE(2), using enzyme immunoassay and MS uptake by peritoneal macrophages. To assess the preservation of biological activities of this mediator, we determined the effect of PGE(2) released from MS on LPS-induced TNF-alpha release by murine peritoneal macrophages. We also analyzed the effect of encapsulated PGE(2) on inflammatory mediators release from HUVECs. Finally, we studied the effect of PGE(2) released from biodegradable MS in sepsis animal model. The use of this formulation can provide an alternative strategy for treating infections, by modulating or inhibiting inflammatory responses, especially when they constitute an exacerbated profile. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Studies on the therapeutic potential of venom peptides have significantly advanced the development of new peptide drugs. A good example is captopril, a synthetic peptide drug, which acts as an anti-hypertensive and potentiating bradykinin, inhibiting the angiotensin-converting enzyme, whose precursor was isolated from the venom of Bothrops jararacussu. The natriuretic peptide (NPs) family comprises three members, ANP (atrial natriuretic peptide), BNP (B-type natriuretic peptide) and CNP (C-type natriuretic peptide), and has an important role in blood pressure regulation and electrolyte homeostasis. In this study, we describe, for the first time, the isolation and characterization of a novel natriuretic-like peptide (Coa_NP), isolated from Crotalus Oreganus abyssus venom. The peptide has 32 amino acids and its complete sequence is SKRLSNGCFGLKLDRIGAMSGLGCWRLINESK. The Coa_NP has an average molecular mass of 3510.98 Da and its amino acid sequence presents the loop region that is characteristic of natriuretic peptides (17 amino acids, NP domain consensus; CFGXXXDRIXXXSGLGC). Coa_NP is a natriuretic peptide of the ANP/BNP-like family, since the carboxy terminal region of CNP has its own NP domain. The functional experiments showed that Coa_NP produced biological effects similar to those of the other natriuretic peptides: (1) a dose-dependent decrease in mean arterial pressure; (2) significant increases in plasma nitrite levels, and (3) vasorelaxation in thoracic aortic rings that were pre-contracted with phenylephrine. The structural and biological aspects confirm Coa_NP as a natriuretic peptide isolated from snake venom, thus expanding the diversification of venom components.
Resumo:
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl(-)] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.
Resumo:
Background: Obesity and obstructive sleep apnea (OSA) are both associated with the prevalence of major cardiovascular illnesses and certain common factors they are considered responsible for, such as stress oxidative increase, sympathetic tonus and resistance to insulin. Objective: The aim of the present study was to compare the effect of continuous positive airway pressure (CPAP) on oxidative stress and adiponectin levels in obese patients with and without OSA. Methods: Twenty-nine obese patients were categorized into 3 groups: group 1: 10 individuals without OSA (apnea-hypopnea index, AHI <= 5) who did not have OSA diagnosed at polysomnography; group 2: 10 patients with moderate to severe OSA (AHI >= 20) who did not use CPAP; group 3: 9 patients with moderate to severe OSA (AHI >= 20) who used CPAP. Results: Group 3 showed significant differences before and after the use of CPAP, in the variables of diminished production of superoxide, and increased nitrite and nitrate synthesis and adiponectin levels. Positive correlations were seen between the AHI and the superoxide production, between the nitrite and nitrate levels and the adiponectin levels, between superoxide production and the HOMA-IR, and between AHI and the HOMA-IR. Negative correlations were found between AHI and the nitrite and nitrate levels, between the superoxide production and that of nitric oxide, between the superoxide production and the adiponectin levels, between AHI and the adiponectin levels, and between the nitrite and nitrate levels and the HOMA-IR. Conclusions: This study demonstrates that the use of CPAP can reverse the increased superoxide production, the diminished serum nitrite, nitrate and plasma adiponectin levels, and the metabolic changes existing in obese patients with OSA. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Context: Genetic polymorphisms at the perilipin (PLIN) locus have been investigated for their potential utility as markers for obesity and metabolic syndrome (MS). We examined in obese children and adolescents (OCA) aged 7-14 yr the association of single-nucleotide polymorphisms (SNP) at the PLIN locus with anthropometric, metabolic traits, and weight loss after 20-wk multi-disciplinary behavioral and nutritional treatment without medication. Design: A total of 234 OCA [body mass index (BMI = 30.4 +/- 4.4 kg/m(2); BMI Z-score = 2.31 +/- 0.4) were evaluated at baseline and after intervention. We genotyped four SNPs (PLIN1 6209T -> C, PLIN4 11482G -> A, PLIN5 13041A -> G, and PLIN6 14995A -> T). Results: Allele frequencies were similar to other populations, PLIN1 and PLIN4 were in linkage disequilibrium (D` = 0.999; P < 0.001). At baseline, no anthropometric differences were observed, but minor allele A at PLIN4 was associated with higher triglycerides (111 +/- 49 vs. 94 +/- 42 mg/dl; P = 0.003), lower high-density lipoprotein cholesterol (40 +/- 9 vs. 44 +/- 10 mg/dl; P = 0.003) and higher homeostasis model assessment for insulin resistance (4.0 +/- 2.3 vs. 3.5 +/- 2.1; P +/- 0.015). Minor allele A at PLIN4 was associated with MS risk (age and sex adjusted) hazard ratio 2.4 (95% confidence interval = 1.1-4.9) for genotype GA and 3.5 (95% confidence interval = 1.2-9.9) for AA. After intervention, subjects carrying minor allele T at PLIN6 had increased weight loss (3.3 +/- 3.7 vs. 1.9 +/- 3.4 kg; P = 0.002) and increased loss of the BMI Z-score (0.23 +/- 0.18 vs. 0.18 +/- 0.15; P +/- 0.003). Due to group size, risk of by-chance findings cannot be excluded. Conclusion: The minor A allele at PLIN4 was associated with higher risk of MS at baseline, whereas the PLIN6 SNP was associated with better weight loss, suggesting that these polymorphisms may predict outcome strategies based on multidisciplinary treatment for OCA. (J Clin Endocrinol Metab 93: 4933-4940, 2008)
Resumo:
Lima GA, Anhe GF, Giannocco G, Nunes MT, Correa-Giannella ML, Machado UF. Contractile activity per se induces transcriptional activation of SLC2A4 gene in soleus muscle: involvement of MEF2D, HIF-1a, and TR alpha transcriptional factors. Am J Physiol Endocrinol Metab 296: E132-E138, 2009. First published October 28, 2008; doi: 10.1152/ajpendo.90548.2008.-Skeletal muscle is a target tissue for approaches that can improve insulin sensitivity in insulin-resistant states. In muscles, glucose uptake is performed by the GLUT-4 protein, which is encoded by the SLC2A4 gene. SLC2A4 gene expression increases in response to conditions that improve insulin sensitivity, including chronic exercise. However, since chronic exercise improves insulin sensitivity, the increased SLC2A4 gene expression could not be clearly attributed to the muscle contractile activity per se and/or to the improved insulin sensitivity. The present study was designed to investigate the role of contractile activity per se in the regulation of SLC2A4 gene expression as well as in the participation of the transcriptional factors myocyte enhancer factor 2D (MEF2D), hypoxia inducible factor 1a (HIF-1a), and thyroid hormone receptor-alpha (TR alpha). The performed in vitro protocol excluded the interference of metabolic, hormonal, and neural effects. The results showed that, in response to 10 min of electrically induced contraction of soleus muscle, an early 40% increase in GLUT-4 mRNA (30 min) occurred, with a subsequent 65% increase (120 min) in GLUT-4 protein content. EMSA and supershift assays revealed that the stimulus rapidly increased the binding activity of MEF2D, HIF-1a, and TR alpha into the SLC2A4 gene promoter. Furthermore, chromatin immunoprecipitation assay confirmed, in native nucleosome, that contraction induced an approximate fourfold (P < 0.01) increase in MEF2D and HIF-1a-binding activity. In conclusion, muscle contraction per se enhances SLC2A4 gene expression and that involves MEF2D, HIF-1a, and TR alpha transcription factor activation. This finding reinforces the importance of physical activity to improve glycemic homeostasis independently of other additional insulin sensitizer approaches.
Resumo:
Background: Dietary salt restriction has been reported to adversely modify the plasma lipoprotein profile in hypertensive and in normotensive subjects. We investigated the effects of the low sodium intake (LSI) on the plasma lipoprotein profile and on inflammation and thrombosis biomarkers during the fasting and postprandial periods. Methods: Non-obese, non-treated hypertensive adults (n=41) were fed strictly controlled diets. An initial week on a control diet (CID, Na=160 mmol/day) was followed by 3 weeks on LSI (Na=60mmol/day). At admission and on the last day of each period, the 24-h ambulatory blood pressure was monitored and blood was drawn after an overnight fasting period and after a fat-rich test meal. Results: The dietary adherence was confirmed by 24-h urinary sodium excretion. Fasting triglyceride (TG), chylomicron-cholesterol, hsC-reactive protein (CRP), tumor necrosis factor-a (TNF-alpha). interleukin-6 (IL-6) concentrations, renin activity, aldosterone, insulin, and homeostasis model assessment insulin resistance (HOMA-IR) Values were higher, but non-esterified fatty acids (NEFA) were lower on LSI than on CD. For LSI, areas under the curve (AUC) of TG, chylomicron-cholesterol, apoB and the cholesterol/apoB ratio were increased, whereas AUC-NEFA was lowered. LSI did not modify body weight, hematocrit, fasting plasma cholesterol, glucose, adiponectin, leptin, fibrinogen and factor VII (FVII), and AUC of lipoprotein lipase and of lipoprotein remnants. Conclusion: LSI induced alterations in the plasma lipoproteins and in inflammatory markers that are common features of the metabolic syndrome. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objectives: To evaluate the effects of Metformin and Glyburide on cardiovascular, metabolic and hormonal parameters during progressive exercise performed to exhaustion in the post-prandial state in women with type 2 diabetes (T2DM). Design and Methods: Ten T2DM patients treated with Metformin (M group), 10 with Glyburide (G group) and 10 age-paired healthy subjects exercised on a bicycle ergometer up to exercise peak. Cardiovascular and blood metabolic and hormonal parameters were measured at times -60 min, 0 min, exercise end, and at 10 and 20 minutes of recovery phase. Thirty minutes before the exercise, a standard breakfast was provided to all participants. The diabetic patients took Metformin or Glyburide before or with meal. Results: Peak oxygen uptake (VO2) was lower in patients with diabetes. Plasma glucose levels remained unchanged, but were higher in both diabetic groups. Patients with diabetes also presented lower insulin levels after meals and higher glucagon levels at exercise peak than C group. Serum cortisol levels were higher in G than M group at exercise end and recovery phase. Lactate levels were higher in M than G group at fasting and in C group at exercise peak. Nor epinephrine, GH and FFA responses were similar in all 3 groups. Conclusion: Progressive exercise performed to exhaustion, in the post-prandial state did not worsen glucose control during and after exercise. The administration of the usual dose of Glyburide or Metformin to T2DM patients did not influence the cardiovascular, metabolic and hormonal response to exercise.
Resumo:
Background and objectives Fibroblast growth factor 23 (FGF-23) has emerged as a new factor in mineral metabolism in chronic kidney disease (CKD). An important regulator of phosphorus homeostasis, FGF-23 has been shown to independently predict CKD progression in nondiabetic renal disease. We analyzed the relation between FGF-23 and renal outcome in diabetic nephropathy (DN). Design, setting, participants, & measurements DN patients participating in a clinical trial (enalapril+placebo versus enalapril+losartan) had baseline data collected and were followed until June 2009 or until the primary outcome was reached. Four patients were lost to follow-up. The composite primary outcome was defined as death, doubling of serum creatinine, and/or dialysis need. Results At baseline, serum FGF-23 showed a significant association with serum creatinine, intact parathyroid hormone, proteirturia, urinary fractional excretion of phosphate, male sex, and race. Interestingly, FGF-23 was not related to calcium, phosphorus, 25OH-vitamin D, or 24-hour urinary phosphorus. Mean follow-up time was 30.7 +/- 10 months. Cox regression showed that FGF-23 was an independent predictor of the primary outcome, even after adjustment for creatinine clearance and intact parathyroid hormone (10 pg/ml FGF-23 increase = hazard ratio, 1.09; 95% CI, 1.01 to 1.16, P = 0.02). Finally, Kaplan-Meier analysis showed a significantly higher risk of the primary outcome in patients with FGF-23 values of >70 pg/ml. Conclusions FGF-23 is a significant independent predictor of renal outcome in patients with macroalbuminuric DN. Further studies should clarify whether this relation is causal and whether FGF-23 should be a new therapeutic target for CKD prevention. Clin J Am Soc Nephrol 6: 241-247, 2011. doi: 10.2215/CJN.04250510
Resumo:
We investigated the effects of dietary trans fatty acids, PUFA, and SEA on body and liver fat content, liver histology, and mRNA of enzymes involved in fatty acid metabolism. LDL receptor knockout weaning male mice were fed for 16 wk with diets containing 40% energy as either trans fatty acids (TRANS), PUFA, or SEA. Afterwards, subcutaneous and epididymal fat were weighed and histological markers of nonalcoholic fatty liver disease (NAFLD) were assessed according to the Histological Scoring System for NAFLD. PPAR alpha, PPAR gamma, microsomal triglyceride transfer protein (MTP), carnitine palmitoyl transferase 1 (CPT-1), and sterol regulatory element binding protein-1c (SREBP-1c) mRNA were measured by quantitative RT-PCR. Food intake was similar in the 3 groups, although mice fed the TRANS diet gained less weight than those receiving the PUFA diet. Compared with the PUFA- and SEA-fed mice, TRANS-fed mice had greater plasma total cholesterol (TC) and triglyceride (TG) concentrations, less epididymal and subcutaneous fat, larger livers with nonalcoholic steatohepatitis (NASH)-like lesions, and greater liver TC and TG concentrations. Macrosteatosis in TRANS-fed mice was associated with a higher homeostasis model assessment of insulin resistance (HOMA(IR)) index and upregulated mRNA related to hepatic fatty acid synthesis (SREBP-1 c and PPAR gamma) and to downregulated MTP mRNA. Diet consumption did not alter hepatic mRNA related to fatty acid oxidation (PPAR alpha and CPT-1). In conclusion, compared with PUFA- and SFA-fed mice, TRANS-fed mice had less adiposity, impaired glucose tolerance characterized by greater HOMA(IR) index, and NASH-like lesions due to greater hepatic lipogenesis. These results demonstrate the role of trans fatty acid intake on the development of key features of metabolic syndrome. J. Nutr. 140: 1127-1132, 2010.
Resumo:
In type 2 diabetes (DM2) there is progressive deterioration in beta-cell function and mass. It was found that islet function was about 50% of normal at the time of diagnosis and reduction in beta-cell mass of about 60% at necropsy (accelerated apoptosis). Among the interventions to preserve the beta-cells, those to lead to short-term improvement of beta-cell secretion are weight loss, metformin, sulfonylureas, and insulin. The long-term improvement was demonstrated with short-term intensive insulin therapy of newly diagnosed DM2, the use of antiapoptotic drugs such as glitazones, and the use of glucagon-like peptide-1 receptor agonists (GLP-1 mimetics), not inactivated by the enzyme dipeptidyl peptidase 4 and/or to inhibit that enzyme (GLP-1 enhancers). The incretin hormones are released from the gastrointestinal tract in response to nutrient ingestion to enhance glucose-dependent insulin secretion from the pancreas and overall maintenance of glucose homeostasis. From the two major incretins, GLP-1 and GIP (glucose-dependent insulinotropic polypeptide), only the first one or its mimetics or enhancers can be used for treatment. The GLP-1 mimetics exenatide and liraglutide as well as the DPP4 inhibitors (sitagliptin and vildagliptin) were approved for treatment of DM2.