147 resultados para Stretch-sensitive ion channels
Resumo:
Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the Uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in the protective mechanism of ischemic preconditioning (IPC). The channel is reportedly sensitive to reactive oxygen and nitrogen species, and the aim of this study was to compare such species in parallel, to build a more comprehensive picture of mK(ATP) regulation. mK(ATP) activity was measured by both osmotic swelling and Tl(+) flux assays, in isolated rat heart mitochondria. An isolated adult rat cardiomyocyte model of ischemia-reperfusion (IR) injury was also used to determine the role of mK(ATP) in cardioprotection by nitroxyl. Key findings were as follows: (i) mK(ATP) was activated by O(2)(center dot-) and H(2)O(2) but not other peroxides. (ii) mK(ATP) was inhibited by NADPH. (iii) mK(ATP) was activated by S-nitrosothiols, nitroxyl, and nitrolinoleate. The latter two species also inhibited mitochondrial complex II. (iv) Nitroxyl protected cardiomyocytes against IR injury in an mK(ATP)-dependent manner. Overall, these results suggest that the mK(ATP) channel is activated by specific reactive oxygen and nitrogen species, and inhibited by NADPH. The redox modulation of mK(ATP) may be an underlying mechanism for its regulation in the context of IPC. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ischemia followed by reperfusion is known to negatively affect mitochondrial function by inducing a deleterious condition termed mitochondrial permeability transition. Mitochondrial permeability transition is triggered by oxidative stress, which occurs in mitochondria during ischemia-reperfusion as a result of lower antioxidant defenses and increased oxidant production. Permeability transition causes mitochondrial dysfunction and can ultimately lead to cell death. A drug able to minimize mitochondrial damage induced by ischemia-reperfusion may prove to be clinically effective. We aimed to analyze the effects of nicorandil, an ATP-sensitive potassium channel agonist and vasodilator, on mitochondrial function of rat hearts and cardiac HL-1 cells submitted to ischemia-reperfusion. Nicorandil decreased mitochondrial swelling and calcium uptake. It also decreased reactive oxygen species formation and thiobarbituric acid reactive substances levels, a lipid peroxidation biomarker. We thus confirm previous reports that nicorandil inhibits mitochondrial permeability transition and demonstrate that nicorandil inhibits this process by preventing oxidative damage and mitochondrial calcium overload induced by ischemia-reperfusion, resulting in improved cardiomyocyte viability. These results may explain the good clinical results obtained when using nicorandil in the treatment of ischemic heart disease.
Resumo:
Ion channels have been assigned a pivotal importance in various sperm functions and are therefore promising targets for contraceptive development. The lack of data on channel functionality and pharmacology has hampered this goal. This is a consequence of technical problems of applying electrophysiological techniques to spermatozoa due to their small size and form. By using a laminin coating to increase adherence of spermatozoa and nystatin in the patch pipette for pore formation, we have adapted the whole-cell recording technique to study currents in mature uncapacitated bovine spermatozoa. Employing these conditions, in the head region, patched spermatozoa could be transferred into the whole-cell configuration. For the first time we document an outward rectifying current in mature bovine spermatozoa was blocked by tetraethyl ammonium (TEA) chloride. The observation of a shift in the reversal potential as a response to changes in the extracellular concentration of K+ ions allowed us to identify this current as K+ selective. This result shows that K+ channels in the head region of mature uncapacitated bovine spermatozoa can be suitably investigated using the whole-cell recording patch-clamp technique.
Resumo:
We have analyzed a large set of alpha + alpha elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. Because of the complete lack of open reaction channels, the optical interaction at these energies must have a vanishing imaginary part. Thus, this system is particularly important because the corresponding elastic scattering cross sections are very sensitive to the real part of the interaction. The data were analyzed in the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have verified that, even in this low-energy region, the velocity dependence of the model is quite important for describing the data of the alpha + alpha system.
Resumo:
The quasi-elastic excitation function for the (17)O+(64)Zn system was measured at energies near and below the Coulomb barrier, at the backward angle theta(lab) = 161 degrees. The corresponding quasi-elastic barrier distribution was derived. The excitation function for the neutron stripping reactions was also measured, at the same angle and energies, and the experimental values of the spectroscopic factors were deduced by fitting the data. A reasonably good agreement was obtained between the experimental quasi-elastic barrier distribution with the coupled-channel calculations including a very large number of channels. Of the channels investigated, three dominated the coupling matrix: two inelastic channels, (64)Zn(2(1)(+)) and (17)O(1/(+)(2)), and one-neutron transfer channel, particularly the first one. On the other hand, a very good agreement is obtained when we use a nuclear diffuseness for the (17)O nucleus larger than the one for (16)O. We verify that quasi-elastic barrier distribution is a sensitive tool for determining nuclear matter diffuseness.
Resumo:
Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.
Resumo:
We present the first measurements of the rho(770)(0),K(*)(892),Delta(1232)(++),Sigma(1385), and Lambda(1520) resonances in d+Au collisions at
Resumo:
Quasielastic excitation functions for the (16,18)O + (60)Ni systems were measured at energies near and below the Coulomb barrier, at the backward angle theta(LAB) = 161 degrees. The corresponding quasielastic barrier distributions were derived. The data were compared with predictions from coupled channel calculations using a double-folding potential as a bare potential. For the (16)O-induced scattering, good agreement was obtained for the barrier distribution by using the projectile default nuclear matter diffuseness obtained from the Sao Paulo potential systematic, that is, 0.56 fm. However, for the (18)O-induced scattering, good agreement was obtained only when the projectile nuclear matter diffuseness was changed to 0.62 fm. Therefore, in this paper we show how near-barrier quasielastic scattering can be used as a sensitive tool to derive nuclear matter diffuseness.
Resumo:
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 296: R201-R207, 2009. First published September 17, 2008; doi: 10.1152/ajpregu.90602.2008.-Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B(2) receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B(2) receptor-mediated inflammatory responses in vascular cells.
An imaginary potential with universal normalization for dissipative processes in heavy-ion reactions
Resumo:
In this work we present new coupled channel calculations with the Sao Paulo potential (SPP) as the bare interaction, and an imaginary potential with system and energy independent normalization that has been developed to take into account dissipative processes in heavy-ion reactions. This imaginary potential is based on high-energy nucleon interaction in nuclear medium. Our theoretical predictions for energies up to approximate to 100 MeV/nucleon agree very well with the experimental data for the p, n + nucleus, (16)O + (27)Al, (16)O + (60)Ni, (58)Ni + (124)Sn, and weakly bound projectile (7)Li + (120)Sn systems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: Removable partial dentures (RPD) require different hygiene care, and association of brushing and chemical cleansing is the most recommended to control biofilm formation. However, the effect of cleansers has not been evaluated in RPD metallic components. The aim of this study was to evaluate in vitro the effect of different denture cleansers on the weight and ion release of RPD. MATERIAL AND METHODS: Five specimens (12x3 mm metallic disc positioned in a 38x18x4 mm mould filled with resin), 7 cleanser agents [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) (control)] and 2 cobalt-chromium alloys [DeguDent (DD), and VeraPDI (VPDI)] were used for each experimental situation. One hundred and eighty immersions were performed and the weight was analyzed with a high precision analytic balance. Data were recorded before and after the immersions. The ion release was analyzed using mass spectrometry with inductively coupled plasma. Data were analyzed by two-way ANOVA and Tukey HSD post hoc test at 5% significance level. RESULTS: Statistical analysis showed that CT and MI had higher values of weight loss with higher change in VPDI alloy compared to DD. The solutions that caused more ion release were NaOCl and MI. CONCLUSIONS: It may be concluded that 0.05% NaOCl and Medical Interporous tablets are not suitable as auxiliary chemical solutions for RPD care.
Resumo:
Amyloglucosidase enzyme was produced by Aspergillus niger NRRL 3122 from solid-state fermentation, using deffated rice bran as substrate. The effects of process parameters (pH, temperature) in the equilibrium partition coefficient for the system amyloglucosidase - resin DEAE-cellulose were investigated, aiming at obtaining the optimum conditions for a subsequent purification process. The highest partition coefficients were obtained using 0.025M Tris-HCl buffer, pH 8.0 and 25ºC. The conditions that supplied the highest partition coefficient were specified, the isotherm that better described the amyloglucosidase process of adsorption obtained. It was observed that the adsorption could be well described by Langmuir equation and the values of Qm and Kd estimated at 133.0 U mL-1 and 15.4 U mL-1, respectively. From the adjustment of the kinetic curves using the fourth-order Runge-Kutta algorithm, the adsorption (k1) and desorption (k2) constants were obtained through optimization by the least square procedure, and the values calculated were 2.4x10-3 mL U-1 min-1 for k1 and 0.037 min-1 for k2 .
Resumo:
The aqueous alkaline reaction of 1,3-bis(4-cyanopyridinium)propane dibromide, a reactant constituted of two pyridinium rings linked by a three-methylene bridge, generates a novel compound,1 -(4-cyano-2-oxo-1,2-dihydro-1-pyridyl)-3-(4-cyano-1,2-dihydro-1-pyridyl)propane. The reaction pathway is attributed to the proximity of the OH- ion inserted between two pyridinium moieties, which occurs only in bis(pyridinium) derivatives connected by short methylene spacers, where charge-conformational effects are important.