124 resultados para Semipermeable Membrane Devices
Resumo:
This paper presents a relatively simple method to fabricate field-emitter arrays from silicon substrates. These devices are obtained from silicon micromachining by means of the HI-PS technique-a combination of hydrogen ion implantation and porous silicon used as sacrificial layer. Also, a new process sequence is proposed and implemented to fabricate self-aligned integrated field-emission devices based on this technique. Electrical characteristics of the microtips obtained show good agreement with the Fowler-Nordheim theory, which are suitable for the proposed application.
Resumo:
A new digital computer mock circulatory system has been developed in order to replicate the physiologic and pathophysiologic characteristics of the human cardiovascular system. The computer performs the acquisition of pressure, flow, and temperature in an open loop system. A computer program has been developed in Labview programing environment to evaluate all these physical parameters. The acquisition system was composed of pressure, flow, and temperature sensors and also signal conditioning modules. In this study, some results of flow, cardiac frequencies, pressures, and temperature were evaluated according to physiologic ventricular states. The results were compared with literature data. In further works, performance investigations will be conducted on a ventricular assist device and endoprosthesis. Also, this device should allow for evaluation of several kinds of vascular diseases.
Resumo:
In this paper it is presented the theoretical background, the architecture (using the ""4+1"" model), and the use of the library for execution of adaptive devices, AdapLib. This library was created seeking to be accurate to the adaptive devices theory, and to allow its easy extension considering the specific details of solutions that employ this kind of device. As an example, it is presented a case study in which the library was used to create a proof of concept to monitor and diagnose problems in an online news portal.
Resumo:
A new approach to electrochromics, based on the reversible coating-dissolution of an oxide from an inorganic electrochromic electrolyte consisting of a silver-amine complex in a polymer electrolyte (PEO), has proven successful. The reversible electrodeposition of silver onto indium-tin oxide coated glass (ITO) was investigated and the influence of HClO(4) and KI was evaluated. Several characteristics of the electrolyte Ag-PEO make it suitable for use in electrochromic reversible silver electrodeposition devices, such as visible absorption spectrum with an absorbance variation of 60%, an electrochromic efficiency of 5.2 cm(2) C(-1) and an ionic conductivity 4.4 x 10(-4) S cm(-1). The addition of perchloric acid improved the transparency of Ag-PEO, and potassium iodide (KI) was fundamental in setting up the process of reversible silver electrodeposition in the PEO polymeric matrix. A description of the electrochemical processes implied is presented. A number of approaches focusing on the improvement of system performance are tested. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work we studied the mixture of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), a commercial polymer, with monobasic potassium phosphate (KDP), a piezoelectric salt, as a possible novel material in the fabrication of a low cost, easy-to-make,flexible pressure sensing device. The mixture between KDP and PEDOT: PSS was painted in a flexible polyester substrate and dried. Afterwards, I x V curves were carried out. The samples containing KDP presented higher values of current in smaller voltages than the PEDOT: PSS without KDP. This can mean a change in the chain arrays. Other results showed that the material responds to directly applied pressure to the sample that can be useful to sensors fabrication. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the conserved beta-barrel and plug domains of TonB-dependent proteins but only 18 of them have an N-terminal signaling domain characteristic of TonB-dependent transducers (TBDTs), which participate in cell-surface signaling systems. Phylogenetic analyses of the 18 TBDTs and 27 TonB-dependent receptors (TBDRs), which lack the N-terminal signaling domain, suggest a complex evolutionary history including horizontal transfer among different microbial lineages. Putative functions were assigned to certain TBDRs and TBDTs in clades including well-characterized orthologs from other Pseudomonas spp. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. The mutant could utilize as iron sources a large number of pyoverdines with diverse structures as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin. The diversity and complexity of the TBDTs and TBDRs with roles in iron uptake clearly indicate the importance of iron in the fitness and survival of Pf-5 in the environment.
Resumo:
An experiment was implemented to study fluid flow in a pressure media. This procedure successfully combines nuclear magnetic resonance imaging with a pressure membrane chamber in order to visualize the non-wetting and wetting fluid flows with controlled boundary conditions. A specially designed pressure membrane chamber, made of non-magnetic materials and able to withstand 4 MPa, was designed and built for this purpose. These two techniques were applied to the drainage of Douglas fir sapwood. In the study of the longitudinal flow, narrow drainage fingers are formed in the latewood zones. They follow the longitudinal direction of wood and spread throughout the sample length. These fingers then enlarge in the cross-section plane and coalesce until drainage reaches the whole latewood part. At the end of the experiments, when the drainage of liquid water in latewood is completed, just a few sites of percolation appear in earlywood zones. This difference is a result of the wood anatomical structure, where pits, the apertures that allow the sap to flow between wood cells, are more easily aspirated in earlywood than in latewood. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) of Plasmodium sp. has been suggested as a vaccine candidate against malaria. This protein seems to be involved in merozoite invasion and its extra-cellular portion contains three distinct domains: DI, DII, and DIII. Previously, we described that Plasmodium vivax AMA-1 (PvAMA-1) ectodomain is highly immunogenic in natural human infections. Here, we expressed each domain, separately or in combination (DI-II or DII-III), as bacterial recombinant proteins to map immunodominant epitopes within the PvAMA-1 ectodomain. IgG recognition was assessed by ELISA using sera of P. vivax-infected individuals collected from endemic regions of Brazil or antibodies raised in immunized mice. The frequencies of responders to recombinant proteins containing the DII were higher than the others and similar to the ones observed against the PvAMA-1 ectodomain. Moreover, ELISA inhibition assays using the PvAMA-1 ectodomain as substrate revealed the presence of many common epitopes within DI-II that are recognized by human immune antibodies. Finally, immunization of mice with the PvAMA-1 ectodomain induced high levels of antibodies predominantly to DI-II. Together, our results indicate that DII is particularly immunogenic during natural human infections, thus indicating that this region could be used as part of an experimental sub-unit vaccine to prevent vivax malaria. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Sunless tanning formulas have become increasingly popular in recent years for their ability to give people convincing tans without the dangers of skin cancer. Most sunless tanners currently on the market contain dihydroxyacetone (DHA), a keto sugar with three carbons. The temporary pigment provided by these formulasis designed to resemble a UV-induced tan. This study evaluated the effectiveness of carbomer gels and cold process self emulsifying bases on skin pigmentation, using different concentrations of a chemical system composed of DHA and N-acetyl tyrosine, which are found in moulted snake skins and their effectiveness was tested by Mexameter (R) MX 18. Eight different sunless tanning formulas were developed, four of which were gels and four of which were emulsions (base, base plus 4.0%, 5.0% and 6.0% (w/w) of a system of DHA and N-acetyl tyrosine). Tests to determine the extent of artificial tanning were done by applying 30 mg cm(-2) of each formula onto standard sizes of moulted snake skin (2.0 cm x 3.0 cm). A Mexameter (R) MX 18 was used to evaluate the extent of coloration in the moulted snake skin at T(0) (before the application) and after 24, 48, 72, 168, 192 and 216 h. The moulted snake skins can be used as an alternative membrane model for in vitro sunless tanning efficacy tests due to their similarity to the human stratum corneum. The DHA concentration was found to influence the initiation of the pigmentation in both sunless tanning systems (emulsion and gel) as well as the time required to increases by a given amount on the tanning index. In the emulsion system, the DHA concentration also influenced the final value on the tanning index. The type of system (emulsion or gel) has no influence on the final value in the tanning index after 216 h for samples with the same DHA concentration.
Resumo:
The Apical Membrane Antigen 1 (AMA-1) is considered a promising candidate for development of a malaria vaccine against asexual stages of Plasmodium. We recently identified domain II (DII) of Plasmodium vivax AMA-1 (PvAMA-1) as a highly immunogenic region recognised by IgG antibodies present in many individuals during patent infection with P. vivax. The present study was designed to evaluate the immunogenic properties of a bacterial recombinant protein containing PvAMA-1 DII. To accomplish this, the recombinant protein was administered to mice in the presence of each of the following six adjuvants: Complete/Incomplete Freund`s Adjuvant (CFA/IFA), aluminium hydroxide (Alum), Quil A, QS21 saponin, CpG-ODN 1826 and TiterMax. We found that recombinant DII was highly immunogenic in BALB/c mice when administered in the presence of any of the tested adjuvants. Importantly, we show that DII-specific antibodies recognised the native AMA-1 protein expressed on the surface of P. vivax merozoites isolated from the blood of infected patients. These results demonstrate that a recombinant protein containing PvAMA-1 DII is immunogenic when administered in different adjuvant formulations, and indicate that this region of the AMA-1 protein should continue to be evaluated as part of a subunit vaccine against vivax malaria. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 mu M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca(2+) efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP(+) transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Matrix metalloproteinases (MMPs) are promising diagnostic tools, and blood sampling/handling alters MMP concentrations between plasma and serum and between serum with and without clot activators. To explain the higher MMP-9 expression in serum collected with clot accelerators relative to serum with no additives and to plasma, we analyzed the effects of increasing amounts of silica and silicates (components of clot activators) in,citrate plasma, serum, and huffy coats collected in both plastic and glass tubes from 50 healthy donors, and we analyzed the effects of silica and silicate on cultured leukemia cells. The levels of MMP-2 did not show significant changes between glass and plastic tubes, between serum and plasma, between serum with and without clot accelerators, or between silica and silicate treatments. No modification of MMP-9 expression was obtained by the addition of silica or silicate to previously separated plasma and serum. Increasing the amounts of nonsoluble silica and soluble silicate added to citrate and empty tubes prior to blood collection resulted in increasing levels of MMP-9 relative to citrate plasma and serum. Silica and silicate added to buffy coats and leukemia cells significantly induced MMP-9 release/secretion, demonstrating that both silica and silicate induce the release of pro- and complexed MMP-9 forms. We recommend limiting the misuse of serum and avoiding the interfering effects of clot activators. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The reconstitution of membrane proteins into liposomes is a useful tool to prepare antigenic components that induce immunity. We have investigated the influence of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol molar ratio on the incorporation of a GPI-protein from Leishmania amazonensis on liposomes and Langmuir monolayers. The latter system is a well behaved and practical model, for understanding the effect of variables such as surface composition and lipid packing on protein incorporation. We have found that the DPPC/cholesterol molar ratio significantly alters the incorporation of the GPI-protein. In the absence of cholesterol, reconstitution is more difficult and proteoliposomes cannot be prepared, which we correlated with disruption of the DPPC layer. Our results provide important information that Could be employed in the development of a vaccine system for this disease or be used to produce other GPI-systems for biotechnological application. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.