58 resultados para Semi-infinite and infinite programming
Resumo:
A new two-dimensionally mapped infinite boundary element (IBE) is presented. The formulation is based on a triangular boundary element (BE) with linear shape functions instead of the quadrilateral IBEs usually found in the literature. The infinite solids analyzed are assumed to be three-dimensional, linear-elastic and isotropic, and Kelvin fundamental solutions are employed. One advantage of the proposed formulation over quadratic or higher order elements is that no additional degrees of freedom are added to the original BE mesh by the presence of the IBEs. Thus, the IBEs allow the mesh to be reduced without compromising the accuracy of the result. Two examples are presented, in which the numerical results show good agreement with authors using quadrilateral IBEs and analytical solutions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A slope stability model is derived for an infinite slope subjected to unsaturated infiltration flow above a phreatic surface. Closed form steady state solutions are derived for the matric suction and degree of saturation profiles. Soil unit weight, consistent with the degree of saturation profile, is also directly calculated and introduced into the analyzes, resulting in closed-form solutions for typical soil parameters and an infinite series solution for arbitrary soil parameters. The solutions are coupled with the infinite slope stability equations to establish a fully realized safety factor function. In general, consideration of soil suction results in higher factor of safety. The increase in shear strength due to the inclusion of soil suction is analogous to making an addition to the cohesion, which, of course, increases the factor of safety against sliding. However, for cohesive soils, the results show lower safety factors for slip surfaces approaching the phreatic surface compared to those produced by common safety factor calculations. The lower factor of safety is due to the increased soil unit weight considered in the matric suction model but not usually accounted for in practice wherein the soil is treated as dry above the phreatic surface. The developed model is verified with a published case study, correctly predicting stability under dry conditions and correctly predicting failure for a particular storm.
Resumo:
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalizations allow a neat extension from the class l (1) of absolutely summable lattice potentials to the optimal class l (2) of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l (1) case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l (2) in the Bernoulli case. Open problems are discussed.
Resumo:
We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Using classical techniques, we prove an abstract genericity result that employs the infinite dimensional Sard-Smale theorem, along the lines of an analogous result of B. White [29]. Applications are given by proving the genericity of metrics without degenerate geodesics between fixed endpoints in general (non compact) semi-Riemannian manifolds, in orthogonally split semi-Riemannian manifolds and in globally hyperbolic Lorentzian manifolds. We discuss the genericity property also in stationary Lorentzian manifolds.
Resumo:
We generalize the theory of Kobayashi and Oliva (On the Birkhoff Approach to Classical Mechanics. Resenhas do Instituto de Matematica e Estatistica da Universidade de Sao Paulo, 2003) to infinite dimensional Banach manifolds with a view towards applications in partial differential equations.
Resumo:
The reactions of meso-1,2-bis(phenylsulfinyl)ethane (meso-bpse) with Ph2SnCl2, 2-phenyl-1,3-dithiane trans-1-trans-3-dioxide (pdtd) with n-Bu2SnCl2 and 1,2-cis-bis-(phenylsulfinyl)ethene (rac-,cis-cbpse) with Ph2SnCl2, in 1:1 molar ratio, yielded [{Ph2SnCl2(meso-bpse)}n], [{n-Bu2SnCl2(pdtd)}2] and [{Ph2SnCl2(rac,cis-cbpse)}x] (x = 2 or n), respectively. All adducts were studied by IR, Mössbauer and 119Sn NMR spectroscopic methods, elemental analysis and single crystal X-ray diffractometry. The X-ray crystal structure of [{Ph2SnCl2(meso-bpse)}n] revealed the occurrence of infinite chains in which the tin(IV) atoms appear in a distorted octahedral geometry with Cl atoms in cis and Ph groups in trans positions. The X-ray crystal structure of [{n-Bu2SnCl2(pdtd)}2] revealed discrete centrosymmetric dimeric species in which the tin(IV) atoms possess a distorted octahedral geometry with bridging disulfoxides in cis and n-butyl moieties in trans positions. The spectroscopic data indicated that the adduct containing the rac,cis-cbpse ligand can be dimeric or polymeric. The X-ray structural analysis of the free rac-,cis-cbpse sulfoxide revealed that the crystals belong to the C2/c space group.
Resumo:
The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory [Perdew-Burke-Ernzerhof (PBE) GGA] and a recently proposed modification designed specifically for solids (PBEsol) are identified as particular members of a family of functionals taking their parameters from different properties of homogeneous or inhomogeneous electron liquids. Three further members of this family are constructed and tested, together with the original PBE and PBEsol, for atoms, molecules, and solids. We find that PBE, in spite of its popularity in solid-state physics and quantum chemistry, is not always the best performing member of the family and that PBEsol, in spite of having been constructed specifically for solids, is not the best for solids. The performance of GGAs for finite systems is found to sensitively depend on the choice of constraints stemming from infinite systems. Guidelines both for users and for developers of density functionals emerge from this work.
Resumo:
In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.
Resumo:
In this paper, employing the Ito stochastic Schrodinger equation, we extend Bell's beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm's causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm's causal dynamics regarding stationary states in quantum mechanics.
Resumo:
A combined analytical and numerical study is performed of the mapping between strongly interacting fermions and weakly interacting spins, in the framework of the Hubbard, t-J, and Heisenberg models. While for spatially homogeneous models in the thermodynamic limit the mapping is thoroughly understood, we here focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries, impurities, superlattices, and interfaces. We consider parameter regimes that are relevant for traditional applications of these models, such as electrons in cuprates and manganites, and for more recent applications to atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analytically that if translational symmetry is broken through the presence of impurities, the mapping persists and is, in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where analytical calculations are more complicated.
Resumo:
An exact non-linear formulation of the equilibrium of elastic prismatic rods subjected to compression and planar bending is presented, electing as primary displacement variable the cross-section rotations and taking into account the axis extensibility. Such a formulation proves to be sufficiently general to encompass any boundary condition. The evaluation of critical loads for the five classical Euler buckling cases is pursued, allowing for the assessment of the axis extensibility effect. From the quantitative viewpoint, it is seen that such an influence is negligible for very slender bars, but it dramatically increases as the slenderness ratio decreases. From the qualitative viewpoint, its effect is that there are not infinite critical loads, as foreseen by the classical inextensible theory. The method of multiple (spatial) scales is used to survey the post-buckling regime for the five classical Euler buckling cases, with remarkable success, since very small deviations were observed with respect to results obtained via numerical integration of the exact equation of equilibrium, even when loads much higher than the critical ones were considered. Although known beforehand that such classical Euler buckling cases are imperfection insensitive, the effect of load offsets were also looked at, thus showing that the formulation is sufficiently general to accommodate this sort of analysis. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.