55 resultados para SUBMILLIMETER WAVELENGTHS
Resumo:
Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to compare the effects of Nd:YAG, Er:YAG, and diode lasers on the morphology and permeability of root canal walls. The three laser wavelengths mentioned interact differently with dentin and therefore it is possible that the permeability changes caused will determine different indications during endodontic treatment. Twenty-eight human single-rooted teeth were instrumented up to ISO 40 and divided into four groups: group C, control (GC), non-laser irradiated; group N (GN), irradiated with Nd:YAG laser; group E (GE), with Er:YAG laser and group D (GD) with diode laser. After that, the roots were filled with a 2% methylene blue dye, divided into two halves and then photographed. The images were analyzed using Image J software and the percentage of dye penetration in the cervical, middle, and apical root thirds were calculated. Additional scanning electron microscopy (SEM) analyses were also performed. The analysis of variance (ANOVA) showed significant permeability differences between all groups in the middle and cervical thirds (p < 0.05). The Tukey test showed that in the cervical third, GN presented means of dye penetration statistically significantly lower than all of the other groups. In the middle third, GE and GD showed statistically higher dye penetration means than GC and GN. SEM analysis showed melted surfaces for GN, clean wall surfaces with open dentinal tubules for GE, and mostly obliterated dentinal tubules for GD. Er:YAG (2,094 nm) laser and diode laser (808 nm) root canal irradiation increase dentinal permeability and Nd:YAG (1,064 nm) laser decreases dentin permeability, within the studied parameters.
Resumo:
Aim To evaluate the bond strength of AH Plus and Epiphany sealers to human root canal dentine irradiated with a 980 nm diode laser at different power and frequency parameters, using the push-out test. Methodology Sixty canine roots were sectioned below the cementoenamel junction to provide 4-mm-thick dentine discs that had their root canals prepared with a tapered bur and irrigated with sodium hypochlorite, ethylenediaminetetraacetic acid and distilled water. The specimens were assigned to five groups (n = 12): one control (no laser) and four experimental groups that were submitted to 980 nm diode laser irradiation at different power (1.5 and 3.0 W) and frequency (continuous wave and 100 Hz) parameters. Half of specimens in each group had their canals filled with AH Plus sealer and half with Epiphany. The push-out test was performed and data (MPa) were analysed statistically by ANOVA and Tukey`s test (P < 0.05). The specimens were split longitudinally and examined under SEM to assess the failure modes after sealer displacement. Results The specimens irradiated with the diode laser and filled with AH Plus had significantly higher bond strength values (8.69 +/- 2.44) than those irradiated and filled with Epiphany (3.28 +/- 1.58) and the nonirradiated controls (3.86 +/- 0.60). The specimens filled with Epiphany did not differ significantly to each other or to the control (1.75 +/- 0.69). There was a predominance of adhesive failures at Epiphany-dentine interface (77%) and mixed failures at AH Plus-dentine interface (67%). Conclusions The 980 nm diode laser irradiation of root canal dentine increased the bond strength of AH Plus sealer, but did not affect the adhesion of Epiphany sealer.
Resumo:
Objective: To assess the temperature variation in the cervical, middle and apical thirds of root external wall, caused by 980-nm diode laser irradiation with different parameters. Methods: The roots of 90 canines, had their canals instrumented and were randomly distributed into 3 groups (n = 30) according to the laser potency (1.5 W, 3.0 W and 5.0 W). Each group was subdivided into 3 (n = 10) according to the frequency (CM, 100 Hz and 1000 Hz), and each subgroup divided into 2 (n = S): dried canal or filled with distilled water. The maximum temperature values were collected by 3 thermocouples located at each third of the root external wall and recorded by digital thermometers. Results: The groups irradiated in the continuous mode (CM) presented the highest values (11.82 +/- 5.78), regardless of the canals were dry or not, which were statistically different (p < 0.01) from those obtained with 100 Hz (6.22 +/- 3.64) and 1000 Hz (6.00 +/- 3.36), which presented no statistical difference between them (p > 0.01). The groups irradiated with 5.0 W presented the greatest temperature variation (12.15 +/- 5.14), followed by 3.0 W (7.88 +/- 3.92) and 1.5 W (4.02 +/- 2.16), differing between them (p < 0.01). The cervical third of the root presented the highest temperature rises (9.68 +/- 5.80), followed by the middle (7.66 +/- 4.87) and apical (6.70 +/- 4.23), with statistical difference among them (p < 0.01). After 30 s from the end of irradiation, all the specimens presented temperature variation lower than 10 degrees C. Conclusions: Application of 980-nm diode laser in the root, at 1.5 W in all operating modes, and 3.0 W, in the pulsed mode, for 20 s, can safely be used in endodontic treatment, irrespective of the presence of humidity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, similar to 20 per cent are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analysed the He II lambda 4686 angstrom + C IV lambda 4658 angstrom blended lines of WR 30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6-d period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.
Resumo:
Based on our previous work, we investigate here the effects on the wind and magnetospheric structures of weak-lined T Tauri stars due to a misalignment between the axis of rotation of the star and its magnetic dipole moment vector. In such a configuration, the system loses the axisymmetry presented in the aligned case, requiring a fully three-dimensional (3D) approach. We perform 3D numerical magnetohydrodynamic simulations of stellar winds and study the effects caused by different model parameters, namely the misalignment angle theta(t), the stellar period of rotation, the plasma-beta, and the heating index.. Our simulations take into account the interplay between the wind and the stellar magnetic field during the time evolution. The system reaches a periodic behavior with the same rotational period of the star. We show that the magnetic field lines present an oscillatory pattern. Furthermore, we obtain that by increasing theta(t), the wind velocity increases, especially in the case of strong magnetic field and relatively rapid stellar rotation. Our 3D, time-dependent wind models allow us to study the interaction of a magnetized wind with a magnetized extrasolar planet. Such interaction gives rise to reconnection, generating electrons that propagate along the planet`s magnetic field lines and produce electron cyclotron radiation at radio wavelengths. The power released in the interaction depends on the planet`s magnetic field intensity, its orbital radius, and on the stellar wind local characteristics. We find that a close-in Jupiter-like planet orbiting at 0.05 AU presents a radio power that is similar to 5 orders of magnitude larger than the one observed in Jupiter, which suggests that the stellar wind from a young star has the potential to generate strong planetary radio emission that could be detected in the near future with LOFAR. This radio power varies according to the phase of rotation of the star. For three selected simulations, we find a variation of the radio power of a factor 1.3-3.7, depending on theta(t). Moreover, we extend the investigation done in Vidotto et al. and analyze whether winds from misaligned stellar magnetospheres could cause a significant effect on planetary migration. Compared to the aligned case, we show that the timescale tau(w) for an appreciable radial motion of the planet is shorter for larger misalignment angles. While for the aligned case tau(w) similar or equal to 100 Myr, for a stellar magnetosphere tilted by theta(t) = 30 degrees, tau(w) ranges from similar to 40 to 70 Myr for a planet located at a radius of 0.05 AU. Further reduction on tau(w) might occur for even larger misalignment angles and/or different wind parameters.
Resumo:
Background and Objectives: There are some indications that low-level laser therapy (LLLT) may delay the development of skeletal muscle fatigue during high-intensity exercise. There have also been claims that LED cluster probes may be effective for this application however there are differences between LED and laser sources like spot size, spectral width, power output, etc. In this study we wanted to test if light emitting diode therapy (LEDT) can alter muscle performance, fatigue development and biochemical markers for skeletal muscle recovery in an experimental model of biceps humeri muscle contractions. Study Design/Materials and Methods: Ten male professional volleyball players (23.6 [SD +/- 5.6] years old) entered a randomized double-blinded placebo-controlled crossover trial. Active cluster LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW, 30 seconds total irradiation time, 41.7J of total energy irradiated) or an identical placebo LEDT was delivered under double-blinded conditions to the middle of biceps humeri muscle immediately before exercise. All subjects performed voluntary biceps humeri contractions with a workload of 75% of their maximal voluntary contraction force (MVC) until exhaustion. Results: Active LEDT increased the number of biceps humeri contractions by 12.9% (38.60 [SD +/- 9.03] vs. 34.20 [SD +/- 8.68], P = 0.021) and extended the elapsed time to perform contractions by 11.6% (P = 0.036) versus placebo. In addition, post-exercise levels of biochemical markers decreased significantly with active LEDT: Blood Lactate (P = 0.042), Creatine Kinase (P = 0.035), and C-Reative Protein levels (P = 0.030), when compared to placebo LEDT. Conclusion: We conclude that this particular procedure and dose of LEDT immediately before exhaustive biceps humeri contractions, causes a slight delay in the development of skeletal muscle fatigue, decreases post-exercise blood lactate levels and inhibits the release of Creatine Kinase and C-Reative Protein. Lasers Surg. Med. 41:572-577, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
In the last years, phototherapy has becoming a promising tool to improve skeletal muscle recovery after exercise, however, it was not compared with other modalities commonly used with this aim. In the present study we compared the short-term effects of cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) with placebo LEDT on biochemical markers related to skeletal muscle recovery after high-intensity exercise. A randomized double-blind placebo-controlled crossover trial was performed with six male young futsal athletes. They were treated with CWIT (5A degrees C of temperature [SD +/- 1A degrees]), active LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW of output power, 30 s of irradiation time per point, and 41.7 J of total energy irradiated per point, total of ten points irradiated) or an identical placebo LEDT 5 min after each of three Wingate cycle tests. Pre-exercise, post-exercise, and post-treatment measurements were taken of blood lactate levels, creatine kinase (CK) activity, and C-reactive protein (CRP) levels. There were no significant differences in the work performed during the three Wingate tests (p > 0.05). All biochemical parameters increased from baseline values (p < 0.05) after the three exercise tests, but only active LEDT decreased blood lactate levels (p = 0.0065) and CK activity (p = 0.0044) significantly after treatment. There were no significant differences in CRP values after treatments. We concluded that treating the leg muscles with LEDT 5 min after the Wingate cycle test seemed to inhibit the expected post-exercise increase in blood lactate levels and CK activity. This suggests that LEDT has better potential than 5 min of CWIT for improving short-term post-exercise recovery.
Resumo:
Different hydrogen bonded clusters involving phenol and ethanol are studied theoretically using MP2/aug-cc-pVDZ. Nine different 1: 1 clusters are obtained and analyzed according to their stability and spectroscopic properties. Different isomeric forms of ethanol are considered. Attention is also devoted to the spectral shift of the characteristic pi -> pi* transition of phenol. Using TDHF, CIS, CIS(D) and TDB3LYP in aug-cc-pVDZ basis set, all results agree that a red shift is obtained when phenol is the hydrogen donor and a blue shift is obtained in the opposite case. These results are used to rationalize the red shift observed for phenol in liquid ethanol. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The spectrum of four-times-ionized krypton (Kr V) has been observed in the 230-4900 angstrom wavelength range, resulting in 91 new classified lines. We were able to identify 21 new energy levels belonging to the 4s(2)4p5d, 4s(2)4p5s, 4s(2)4p6s, 4s(2)4p5p and 4s4p(2)4d configurations. Relativistic Hartree-Fock calculations were used to predict energy levels and transitions. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Entanglement is an essential quantum resource for the acceleration of information processing as well as for sophisticated quantum communication protocols. Quantum information networks are expected to convey information from one place to another by using entangled light beams. We demonstrated the generation of entanglement among three bright beams of light, all of different wavelengths (532.251, 1062.102, and 1066.915 nanometers). We also observed disentanglement for finite channel losses, the continuous variable counterpart to entanglement sudden death.
Resumo:
Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.
Resumo:
This paper presents the characterization of single-mode waveguides for 980 and 1550 nm wavelengths. High quality planar waveguide structure was fabricated from Y(1-x)Er(x)Al(3)(BO(3))(4) multilayer thin films with x = 0.02, 0.05, 0.1, 0.3, and 0.5, prepared through the polymeric precursor and sol-gel methods using spin-coating. The propagation losses of the planar waveguides varying from 0.63 to 0.88 dB/cm were measured at 632.8 and 1550 nm. The photoluminescence spectra and radiative lifetimes of the Er(3+) (4)I(13/2) energy level were measured in waveguiding geometry. For most samples the photoluminescence decay was single exponential with lifetimes in between 640 mu s and 200 mu s, depending on the erbium concentration and synthesis method. These results indicate that Er doped YAl(3)(BO(3))(4) compounds are promising for low loss waveguides. (C) 2009 Elsevier B.V. All fights reserved.
Resumo:
The purpose of this research was to evaluate the severity of renal ischemia/reperfusion injury as determined by histology and by laser-induced fluorescence (LIF) with excitation wavelengths of 442 nm and 532 nm. Wistar rats (four groups of six animals) were subjected to left renal warm ischemia for 20, 40, 60 and 80 min followed by 10 min of reperfusion. Autofluorescence was determined before ischemia (control) and then every 5-10 min thereafter. Tissue samples for histology were harvested from the right kidney (control) and from the left kidney after reperfusion. LIF and ischemia time showed a significant correlation (p < 0.0001 and r (2)=0.47, and p=0.006 and r (2)=0.25, respectively, for the excitation wavelengths of 442 nm and 532 nm). Histological scores showed a good correlation with ischemia time (p < 0.0001). The correlations between optical spectroscopy values and histological damage were: LIF at 442 nm p < 0.0001, LIF at 532 nm p=0.001; IFF (peak of back scattered light/LIF) at 442 nm p > 0.05, and IFF at 532 nm p > 0.05. After reperfusion LIF tended to return to preischemic basal levels which occurred in the presence of histological damage. This suggests that factors other than morphological alterations may have a more relevant effect on changes observed in LIF. In conclusion, renal ischemia/reperfusion changed tissue fluorescence induced by laser. The excitation light of 442 nm showed a better correlation with the ischemia time and with the severity of tissue injury.