243 resultados para SEM (Scanning Electron Microscopy)
Resumo:
Papain is a thiol proteolytic enzyme widely used in dermatology that found applications in wound treatment. Recently, papain was also used as absorption enhancer which can modify the peptide/ protein material in the bilayer domain. We investigated papain safety using human skin that was exposed to papain in vitro at different times: 4, 24 and 48 hours. The samples were examined using Light and Transmission Electron Microscopy (TEM) to study of the mechanisms involved in enhancer-skin interaction. After 24 hours, changes occurred in corneosomes. However, samples of 48 hours did not show major changes in agreement with the control. These findings indicated that papain could be used safely onto the skin.
Resumo:
This study describes the normal morphology and morphometry of the dorsal cutaneous branch of the ulnar nerve (DCBU) in humans. Fourteen nerves of eight donors were prepared by conventional techniques for paraffin and epoxy resin embedding. Semiautomatic morphometric analysis was performed by means of specific computer software. Histograms of the myelinated and unmyelinated fiber population and the G-ratio distribution of fibers were plotted. Myelinated fiber density per nerve varied from 5,910 to 10,166 fibers/mm(2), with an average of 8,170 +/- 393 fibers/mm(2). The distribution was bimodal with peaks at 4.0 and 9.5 mu m. Unmyelinated fiber density per nerve varied from 50,985 to 127,108, with an average of 78,474 +/- 6, 610 fibers/mm(2), with a unimodal distribution displaying a peak at 0.8 mu m. This study thus adds information about the fascicles and myelinated and unmyelinated fibers of DCBU nerves in normal people, which may be useful in further studies concerning ulnar nerve neuropathies, mainly leprosy neuropathy.
Resumo:
Objective: The objective of this study was to compare the superficial morphology of bovine and human sclerotic dentine. Design: For the morphological analysis, bovine (n = 3) and human (n = 3) incisors exhibiting exposed dentine were used. Dentine presented characteristics of sclerosis: brownish, smooth and shiny-the vitreous appearance. The teeth were prepared for assessment on a scanning electron microscope (SEM). Three pre-determined areas of each sample were submitted to SEM. The number of open tubules per area was obtained from the electron micrographs (n = 9 per group) for comparison purposes. Results: The number of open tubules in both species compared were similar (p > 0.05). Human dentine presented 31.89 +/- 23.94 open tubules per area, whereas bovine dentine showed 30.33 +/- 18.14 open tubules per area. Conclusion: Based on the results, we concluded that dentine exposed at the incisal surface of human and bovine teeth presented similar clinical and micro-morphological aspects, represented by surfaces with equivalent numbers of open dentinal tubules. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this report, we describe the morphology and histopathology of Myxobolus salminus n. sp., a parasite of the gill filaments of wild Salminus brasiliensis (dourado) from the Brazilian Pantanal. The small polysporic plasmodia were similar to 100 mu m in diameter and the development was asynchronous. The mature spores were oval to pear shaped and had a smooth wall. The spore measurements were (mean +/- S.D., with range in parentheses): length 10.1 +/- 0.4 mu m (9.6-10.5), width 6.1 +/- 0.4 mu m (5.8-6.6) and thickness 5.0 +/- 0.6 mu m (4.7-5.3). The polar capsules were elongated and of equal size: length 4.6 +/- 0.2 mu m (4.3-4.8) and width 1.7 +/- 0.1 mu m (1.5-1.9). The histological analysis revealed numerous plasmodia in the blood vessels of the gill filaments. The site of parasite development was the wall of the large-caliber blood vessel of the gill filament, with progressive growth towards the lumen, resulting in the obstruction of blood flow, congestion and perivascular edema. The ultrastructural study revealed that the plasmodial wall was composed of two membranes, had numerous pinocytic canals and was in direct contact with the basement membrane of the vessel. The development of the parasite was asynchronous, with mature spores, immature spores and young developmental stages randomly distributed throughout the plasmodium. The prevalence of the parasite was 4.4%. with male and female fish being infected. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Boyadjian et al dental wash technique provides, in certain contexts, the only chance to analyze and quantify the use of plants by past populations and is therefore an important milestone for the reconstruction of paleodiet. With this paper we present recent investigations and results upon the influence of this method on teeth. A series of six teeth from a three thousand years old Brazilian shellmound (Jabuticabeira II) was examined before and after dental wash. The main focus was documenting the alteration of the surfaces and microstructures. The status of all teeth were documented using macrophotography, optical light microscopy, and atmospheric Secondary Electron Microscopy (aSEM) prior and after applying the dental wash technique. The comparison of pictures taken before and after dental wash showed the different degrees of variation and damage done to the teeth but, also, provided additional information about microstructures, which have not been visible before. Consequently we suggest that dental wash should only be carried out, if absolutely necessary, after dental pathology, dental morphology and microwear studies have been accomplished. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Migration, invasion and protease activity are essential for tumor progression and metastasis. Metastatic cells rely on invadopodia to degrade and invade extracellular matrix (ECM). Invadopodia are membrane protrusions with enzymes required for ECM degradation. These protrusions contain cortactin and membrane type I matrix metalloproteinase (MT1-MMP) superimposed to areas of digested matrix. Here we characterized invadopodia in a cell line (CAC2) derived from human adenoid cystic carcinoma. We carried out fluorescent-substrate degradation assay to assess in situ protease activity of CAC2 cells. Digestion spots in fluorescent substrate appear as black areas in green background. Cells were cultured on Matrigel-gelatin-FITC and fixed after 1 h and 3 h. CAC2 cells were double labeled to actin and cortactin. Cells were also double stained to actin and MT1-MMR Samples were studied by laser scanning confocal microscopy. In all time points CAC2 cells showed actin, cortactin, and MT1-MMP colocalized with digestion spots in fluorescent substrate. We searched for other proteases involved in invadopodia activity. We have previously demonstrated that MMP9 influences adenoid cystic carcinoma behavior. This prompted us to investigate role played by MMP9 on invadopodia formation. CAC2 cells had MMP9 silenced by siRNA. After I h in fluorescent substrate, cells with silenced MMP9 showed clear decrease in matrix digestion compared with controls. No differences were found in cells with silenced MMP9 grown for 3 h on fluorescent substrate. Our results showed that CAC2 cells exhibit functional invadopodia containing cortactin and MT1-MMR Furthermore, MMP9 would be required in the initial steps of invadopodia formation. Microsc. Res. Tech. 73:99-108, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
The present work shows the growth of nordstrandile microcrystals observed by transmission and scanning electron microscopy. Nordstrandite was synthesised from non-crystalline aluminium hydroxide reacted in 20% ethylene glycol/water solution, at room temperature. This material was characterized by TEM, SEM, SAED, XRD and EDS/TEM, during six month and revealed the formation and growth of nordstrandite. Fibrillar pseudoboehmite is the only aluminium hydroxide which could be identified during the first two weeks. The nuclei grow, from complete dissolution/recrystallization of pseudoboehmite fibrils, into platy rectangular microscrystals of nordstrandite. Some tabular microcrystals recrystallise, forming after six months only the mufti-point nordstrandite stars. This electron-optical study suggest that the star shape results from the overlapping of rectangular plates, and pseudoboehmite fibrils act as the precursor of nordstrandite crystallisation in ethylene glycol/water solution.
Resumo:
Different compositions of visible-light-curable triethylene glycol dimethacrylate/bisglycidyl methacrylate copolymers used in dental resin formulations were prepared through copolymerization photoinitiated by a camphorquinone/ethyl 4-dimethylaminobenzoate system irradiated with an Ultrablue IS light-emitting diode. The obtained copolymers were evaluated with differential scanning calorimetry. From the data for the heat of polymerization, before and after light exposure, obtained from exothermic differential scanning calorimetry curves, the light polymerization efficiency or degree of conversion of double bonds was calculated. The glass-transition temperature also was determined before and after photopolymerization. After the photopolymerization, the glass-transi-tion temperature was not well defined because of the breadth of the transition region associated with the properties of the photocured dimethacrylate. The glass-transition temperature after photopolymerization was determined experimentally and compared with the values determined with the Fox equation. In all mixtures, the experimental value was lower than the calculated value. Scanning electron microscopy was used to analyze the morphological differences in the prepared copolymer structures. (C) 2007 Wiley Periodicals, Inc.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the capacity of potassium oxalate, fluoride gel and two kinds of propolis gel to reduce the hydraulic conductance of dentin, in vitro. MATERIAL AND METHODS: The methodology used for the measurement of hydraulic conductance of dentin in the present study was based on a model proposed in literature. Thirty-six 1-mm-thick dentin discs, obtained from extracted human third molars were divided into 4 groups (n=9). The groups corresponded to the following experimental materials: GI-10% propolis gel, pH 4.1; GII-30% propolis gel; GIII-3% potassium oxalate gel, pH 4,1; and GIV-1.23% fluoride gel, pH 4.1, applied to the dentin under the following surface conditions: after 37% phosphoric acid and before 6% citric acid application. The occluding capacity of the dentin tubules was evaluated using scanning electron microscopy (SEM) at ×500, ×1,000 and ×2,000 magnifications. Data were analyzed statistically by two-way ANOVA and Tukey's test at 5% significance level. RESULTS: Groups I, II, III, IV did not differ significantly from the others in any conditions by reducing in hydraulic conductance. The active agents reduced dentin permeability; however they produced the smallest reduction in hydraulic conductance when compared to the presence of smear layer (P<0.05). The effectiveness in reducing dentin permeability did not differ significantly from 10% or 30% propolis gels. SEM micrographs revealed that dentin tubules were partially occluded after treatment with propolis. CONCLUSIONS: Under the conditions of this study, the application of 10% and 30% propolis gels did not seem to reduce the hydraulic conductance of dentin in vitro, but it showed capacity of partially obliterating the dentin tubules. Propolis is used in the treatment of different oral problems without causing significant great collateral effects, and can be a good option in the treatment of patients with dentin sensitivity.
Resumo:
The association between a toothbrush and a dentifrice is the most used denture cleaning method. The purpose of this study was to evaluate the abrasiveness of specific and non-specific denture cleaning dentifrices on different heat-polymerized acrylic resins. Sixteen specimens (90x30x3mm) of each acrylic resin (QC-20, Lucitone 550, Clássico, Vipi-Cril) were prepared and randomly assigned to 4 groups: 1: control (distilled water), 2: Colgate, 3: Bonyplus and 4: Dentu-Creme. The specimens were subjected to simulated toothbrushing in an automatic brushing machine using 35,600 brush strokes for each specimen. Brushing abrasion run at a 200-g load with the specimens immersed in 2:1 dentifrice/water slurry. Specimens were reconditioned to constant mass and the mass loss (mg) was evaluated. Data were analyzed by 2-way ANOVA and Tukey's test (a=0.05). Analysis of dentifrices' abrasive particles was made by scanning electron microscopy. Colgate produced the greatest mass reduction (42.44 mg, p<0.05), followed by Dentu-Creme (33.60 mg). Bonyplus was the less abrasive (19.91 mg), similar to the control group (19.69 mg) (p>0.05). The mass loss values indicated that QC-20 (33.13 mg) and Lucitone 550 (33.05 mg) resins were less (p<0.05) resistant to abrasion than Clássico (26.04 mg) and Vipi-Cril (23.43 mg). In conclusion, Colgate produced the greatest abrasion. Specific dentifrices for dentures tend to cause less damage to acrylic resins.
Resumo:
Dentin hypersensitivity (DH) is a painful response to stimulus applied to the open dentinal tubules of a vital tooth. It's a common oral condition, however, without an ideal treatment available yet. This work evaluated in vitro the effect of micron-sized particles from a novel bioactive glass-ceramic (Biosilicate) in occluding open dentinal tubules. A dentin disc model was employed to observe comparatively, using scanning electron microscopy (SEM), dentinal tubule occlusion by different products and deposition of hydroxyl carbonate apatite (HCA) on dentin surface by Biosilicate, after a single application: G1 - Dentifrice with potassium nitrate and fluoride; G2 - Two-step calcium phosphate precipitation treatment; G3 - Water-free gel containing Biosilicate particles (1%); G4 - Biosilicate particles mixed with distilled water in a 1:10 ratio; all of them after 1, 12 and 24 hours of immersion in artificial saliva. Fourier transform infrared spectroscopy (FTIR) was performed to detect HCA formation on dentin discs filled with Biosilicate after 2 minutes, 30 minutes and 12 hours of immersion in artificial saliva. SEM showed a layer of HCA formed on dentin surface after 24 hours by G4. G1, G2 and G3 promoted not total occlusion of open dentinal tubules after 24 hours. FTIR showed HCA precipitation on the dentin surface induced by Biosilicate after 30 minutes. The micron-sized particles from the bioactive glass-ceramic thus were able to induce HCA deposition in open dentinal tubules in vitro. This finding suggests that Biosilicate may provide a new option for treating DH.
Resumo:
Calcium phosphate salts, or more specifically hydroxyapatite, are products of great interest in the fields of medical and dental science due to their biocompatibility and osteoconduction property. Deproteinized xenografts are primarily constituted of natural apatites, sintered or not. Variations in the industrial process may affect physicochemical properties and, therefore, the biological outcome. The purpose of this work was to characterize the physical and chemical properties of deproteinized xenogenic biomaterials, Bio-Oss (Geistlich Biomaterials, Wolhuser, Switzerland) and Gen-Ox (Baumer S.A., Brazil), widely used as bone grafts. Scanning electron microscopy, infrared region spectroscopy, X-ray diffraction, thermogravimetry and degradation analysis were conducted. The results show that both materials presented porous granules, composed of crystalline hydroxyapatite without apparent presence of other phases. Bio-Oss presented greater dissolution in Tris-HCl than Gen-Ox in the degradation test, possibly due to the low crystallinity and the presence of organic residues. In conclusion, both commercial materials are hydroxyapatite compounds, Bio-Oss being less crystalline than Gen-Ox and, therefore, more prone to degradation.
Resumo:
This study evaluated the influence of a cola-type soft drink and a soy-based orange juice on the surface and subsurface erosion of primary enamel, as a function of the exposure time. Seventy-five primary incisors were divided for microhardness test (n=45) or scanning electron microscopy (SEM) analysis (n=30). The specimens were randomly assigned to 3 groups: 1 - artificial saliva (control); 2 - cola-type soft drink; and 3 - soy-based orange juice. Immersion cycles in the beverages were undertaken under agitation for 5 min, 3 times a day, during 60 days. Surface microhardness was measured at 7, 15, 30, 45 and 60 days. After 60 days, specimens were bisected and subsurface microhardness was measured at 30, 60, 90, 120, 150 and 200 µm from the surface exposed. Data were analyzed by ANOVA and Tukey’s test (a=0.05). Groups 2 and 3 presented similar decrease of surface microhardness. Regarding subsurface microhardness, group 2 presented the lowest values. SEM images revealed that after 60 days the surfaces clearly exhibited structural loss, unlike those immersed in artificial saliva. It may be concluded that erosion of the surfaces exposed to the cola-type soft drink was more accentuated and directly proportional to the exposure time.
Resumo:
This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (α=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (±4.29); II-8.57 (±3.19); III-7.97 (±2.16); IV-12.56 (±3.11); V-11.45 (±3.77); and VI-7.47 (±1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.
Resumo:
The use of an adequate method for evaluation of the adhesion of root canal filling materials provides more reliable results to allow comparison of the materials and substantiate their clinical choice. The aims of this study were to compare the shear bond strength (SBS) test and push-out test for evaluation of the adhesion of an epoxy-based endodontic sealer (AH Plus) to dentin and gutta-percha, and to assess the failure modes on the debonded surfaces by means of scanning electron microscopy (SEM). Three groups were established (n=7): in group 1, root cylinders obtained from human canines were embedded in acrylic resin and had their canals prepared and filled with sealer; in group 2, longitudinal sections of dentin cylinders were embedded in resin with the canal surface smoothed and turned upwards; in group 3, gutta-percha cylinders were embedded in resin. Polyethylene tubes filled with sealer were positioned on the polished surface of the specimens (groups 2 and 3). The push-out test (group 1) and the SBS test (groups 2 and 3) were performed in an Instron universal testing machine running at crosshead speed of 1 mm/min. Means (±SD) in MPa were: G1 (8.8±1.13), G2 (5.9±1.05) and G3 (3.8±0.55). Statistical analysis by ANOVA and Student's t-test (a=0.05) revealed statistically significant differences (p<0.01) among the groups. SEM analysis showed a predominance of adhesive and mixed failures of AH Plus sealer. The tested surface affected significantly the results with the sealer reaching higher bond strength to dentin than to gutta-percha with the SBS test. The comparison of the employed methodologies showed that the SBS test produced significantly lower bond strength values than the push-out test, was skilful in determining the adhesion of AH Plus sealer to dentin and gutta-percha, and required specimens that could be easily prepared for SEM, presenting as a viable alternative for further experiments.