35 resultados para RNA 18S


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA isolation is essential to study gene expression at the molecular level. However, RNA isolation is difficult in organisms (plants and algae) that contain large amounts of polysaccharides, which co-precipitate with RNA. Currently, there is no commercial kit available, specifically for the isolation of high-quality RNA from these organisms. Furthermore, because of the large amounts of polysaccharides, the common protocols for RNA isolation usually result in poor yields when applied to algae. Here we describe a simple method for RNA isolation from the marine red macroalga Gracilaria tenuistipitata var. liui Zhang et Xia (Rhodophyta), which can be applied to other plants and algae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form intriguingly organized complexes. Two intermediate complexes, pre-40S and pre-60S, are formed at the early stages of 35S pre-rRNA processing and give rise to the mature ribosome subunits. Each of these complexes contains specific pre-rRNAs, some ribosomal proteins and processing factors. The novel yeast protein Utp25p has previously been identified in the nucleolus, an indication that this protein could be involved in ribosome biogenesis. Here we show that Utp25p interacts with the SSU processome proteins Sas10p and Mpp10p, and affects 18S rRNA maturation. Depletion of Utp25p leads to accumulation of the pre-rRNA 35S and the aberrant rRNA 23S, and to a severe reduction in 40S ribosomal subunit levels. Our results indicate that Utp25p is a novel SSU processome subunit involved in pre-40S maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.