54 resultados para Portable interactive devices
Resumo:
Background: Previous studies have pointed out that the mere elevation of the maxillary sinus membrane promotes bone formation without the use of augmentation materials. Purpose: This experimental study aimed at evaluating if the two-stage procedure for sinus floor augmentation could benefit from the use of a space-making device in order to increase the bone volume to enable later implant installation with good primary stability. Materials and Methods: Six male tufted capuchin primates (Cebus apella) were subjected to extraction of the three premolars and the first molar on both sides of the maxilla to create an edentulous area. The sinuses were opened using the lateral bone-wall window technique, and the membrane was elevated. One resorbable space-making device was inserted in each maxillary sinus, and the bone window was returned in place. The animals were euthanatized after 6 months, and biopsy blocks containing the whole maxillary sinus and surrounding soft tissues were prepared for ground sections. Results: The histological examination of the specimens showed bone formation in contact with both the schneiderian membrane and the device in most cases even when the device was displaced. The process of bone formation indicates that this technique is potentially useful for two-stage sinus floor augmentation. The lack of stabilization of the device within the sinus demands further improvement of space-makers for predictable bone augmentation. Conclusions: It is concluded that (1) the device used in this study did not trigger any important inflammatory reaction; (2) when the sinus membrane was elevated, bone formation was a constant finding; and (3) an ideal space-making device should be stable and elevate the membrane to ensure a maintained connection between the membrane and the secluded space.
Resumo:
During a four month scholarly leave in United States of America, researchers designed a culturally appropriate prevention program for eating disorders (ED) for Brazilian adolescent girls. The program ""Se Liga na Nutricao"" was modeled on other effective programs identified in a research literature review and was carried out over eleven interactive sessions. It was positively received by the adolescents who suggested that it be part of school curricula. The girls reported that it helped them to develop critical thinking skills with regards to sociocultural norms about body image, food and eating practices. (Eating Weight Disord. 15: e270-e274, 2010). (C)2010, Editrice Kurtis
Resumo:
The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of (222)Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern Sao Paulo State, Brazil. The observed mean (222)Rn activity concentrations are 374 Bq/dm(3) in one well and about 1275 Bq/dm(3) in the other one. In both wells the (222)Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte (R) system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte (R) devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte (R) were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 mu g/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 mu g/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.
Resumo:
The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.
Resumo:
The literature reports research efforts allowing the editing of interactive TV multimedia documents by end-users. In this article we propose complementary contributions relative to end-user generated interactive video, video tagging, and collaboration. In earlier work we proposed the watch-and-comment (WaC) paradigm as the seamless capture of an individual`s comments so that corresponding annotated interactive videos be automatically generated. As a proof of concept, we implemented a prototype application, the WACTOOL, that supports the capture of digital ink and voice comments over individual frames and segments of the video, producing a declarative document that specifies both: different media stream structure and synchronization. In this article, we extend the WaC paradigm in two ways. First, user-video interactions are associated with edit commands and digital ink operations. Second, focusing on collaboration and distribution issues, we employ annotations as simple containers for context information by using them as tags in order to organize, store and distribute information in a P2P-based multimedia capture platform. We highlight the design principles of the watch-and-comment paradigm, and demonstrate related results including the current version of the WACTOOL and its architecture. We also illustrate how an interactive video produced by the WACTOOL can be rendered in an interactive video environment, the Ginga-NCL player, and include results from a preliminary evaluation.
Resumo:
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
Resumo:
High-resolution X-ray diffractometry is used to probe the nature of a diffraction-peak broadening previously noticed in quantum dots (QDs) systems with freestanding InAs islands on top of GaAs (001) substrates [Freitas et al., Phys. Status Solidi (A) 204, 2548 (2007)]. The procedure is hence extended to further investigate the capping process of InAs/GaAs QDs. A direct correlation is established between QDs growth rates and misorientation of lattice-planes at the samples surfaces. This effect provides an alternative too] for studying average strain fields on QDs systems in standard triple axis diffractometers running on X-ray tube sources, which are much more common than synchrotron facilities. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Primary beam spectra were obtained for an X-ray industrial equipment (40-150 kV), and for a clinical mammography apparatus (25-35 kV) from beams scattered at angles close to 90 degrees, measured with a CdTe Compton spectrometer. Actual scattering angles were determined from the Compton energy shift of characteristic X-rays or spectra end-point energy. Evaluated contribution of coherent scattering amounts to more than 15% of fluence in mammographic beams. This technique can be used in clinical environments. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.
Resumo:
The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO(2)-Ta(2)O(5) chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (Con Cap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In this paper, a detailed study of the capacitance spectra obtained from Au/doped-polyaniline/Al structures in the frequency domain (0.05 Hz-10 MHz), and at different temperatures (150-340 K) is carried out. The capacitance spectra behavior in semiconductors can be appropriately described by using abrupt cut-off models, since they assume that the electronic gap states that can follow the ac modulation have response times varying rapidly with a certain abscissa, which is dependent on both temperature and frequency. Two models based on the abrupt cut-off concept, formerly developed to describe inorganic semiconductor devices, have been used to analyze the capacitance spectra of devices based on doped polyaniline (PANI), which is a well-known polymeric semiconductor with innumerous potential technological applications. The application of these models allowed the determination of significant parameters, such as Debye length (approximate to 20 nm), position of bulk Fermi level (approximate to 320 meV) and associated density of states (approximate to 2x10(18) eV(-1) cm(-3)), width of the space charge region (approximate to 70 nm), built-in potential (approximate to 780 meV), and the gap states` distribution.
Resumo:
Low-frequency noise in an electrolyte-insulator- semiconductor (EIS) structure functionalized with multilayers of polyamidoamine (PAMAM) dendrimer and single-walled carbon nanotubes (SWNT) is studied. The noise spectral density exhibits 1/f(gamma) dependence with the power factor of gamma approximate to 0.8 and gamma = 0.8-1.8 for the bare and functionalized EIS sensor, respectively. The gate-voltage noise spectral density is practically independent of the pH value of the solution and increases with increasing gate voltage or gate-leakage current. It has been revealed that functionalization of an EIS structure with a PAMAM/SWNTs multilayer leads to an essential reduction of the 1/f noise. To interpret the noise behavior in bare and functionalized EIS devices, a gate-current noise model for capacitive EIS structures based on an equivalent flatband-voltage fluctuation concept has been developed.
Resumo:
Fabrication and electroluminescent properties of devices containing europium complexes of general formula [Eu(ACIND)(3)(TPPO)(2)], where ACIND, 2-acyl-1,3-indandionate ligands: and TPPO, triphenylphosphine oxide. as emitter layers are discussed. The double-layer devices based on these complexes present the following configurations: device 1: ITO/TPD/[Eu(AlND)(3)(TPPO)(2)]/Al: device 2: ITO/TPD/[Eu(ISOV-IND)(3)(TPPO)(2)]/Al and device 3: ITO/TPD/[Eu(BIND)(3)(TPPO)(2)]/Al, where AlND, 2-acetyl-1,3-indandionate; ISOVIND, 2-isovaleryl-1,3-indandionate; and BIND, 2-benzoyl-1,3-indandionate, respectively. These devices exhibited photo and electroluminescent emissions. An important characteristic presented by devices is that their electroluminescent (EL) spectra, in the region of (5)D(0) -> (7)F(J) (J = 0, 1, 2, 3 and 4) transitions of Eu(3+) ion, show profiles that are different from photoluminescent (PL) ones. In addition to narrow bands arising from intraconfigurational-4f(6) transitions, devices 1 and 2 also exhibited a broad band with maximum at around 500 nm which is assigned to electrophosphorescence from the indandionate ligands. On the other hand, EL spectra of device 3 present only narrow bands from (5)D(0) -> (7)F(J) transitions. [Eu(ACIND)(3)(TPPO)(2)] complexes are promising candidates to prepare efficient organic light-emitting devices (OLEDs) when compared with those containing Eu(3+)-complexes of aliphatic beta-diketonate anions. (C) 2009 Elsevier B.V. All rights reserved.