80 resultados para POLY(VINYLPHENOL)
Resumo:
In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Semi-interpenetrating networks (Semi-IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly (vinyl alcohol) (PVA) by the sol-gel process in this study. The characterization of the PDMS/PVA semi-IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (-OH) and hydrophobic (Si-(CH(3))(2)) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi-IPNs prepared, which led to a maximum equilibrium water content of similar to 14 wt % without a loss in the ability to swell less polar solvents. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 158-166, 2010
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
The search for an ideal filler for soft tissue augmentation still continues. Because aging changes are continuous, temporary fillers should be preferred against permanent ones. Since 1999, the poly-L-lactic acid filler (PLA) has been marketed in Europe as Newfill. As a synthetic biocompatible polymer, PLA originally was used in suture materials and screws. In 2004, the U.S. Food and Drug Administration approved PLA under the name of Sculptra for the treatment of human immunodeficiency virus-related facial lipoatrophy. This study aimed to evaluate a 3-year follow-up investigation into the effect of PLA implant injection for the treatment of sunken nasolabial folds. Between October 2003 and February 2004, 10 women with a median age of 54 years (range, 43-60 years) were injected with polylactic acid hydrogel (Newfill) in the nasolabial fold area for aesthetic reasons. All the patients underwent three injections: one injection per month for 3 months. Evaluation of the results based on clinical examination and photography was performed at each session, at 6 months, and then 36 months after the third session. Injectable PLA was able to correct nasolabial folds successfully with a more lasting result than absorbable fillers commonly used in clinical practice, such as hyaluronic acid and collagen. Careful and standardized photographic documentation is indispensable.
Resumo:
Poly(ethylene glycol) decorated poly( methyl methacrylate) particles were synthesized by means of emulsion polymerization using poly(ethylene glycol) sorbitan monolaurate (Tween-20) as surfactant. PMMA/PEG particles presented mean diameter (195 +/- 15) nm, indicating narrow size distribution. The adsorption behavior of bovine serum albumin (BSA) and concanavalin A (ConA) onto PMMA/PEG particles was investigated by means of spectrophotometry. Adsorption isotherms obtained for BSA onto PMMA/PEG particles fitted well sigmoidal function, which is typical for multilayer adsorption. Con A adsorbed irreversibly onto PMMA/PEG particles. The efficiency of ConA covered particles to induce dengue virus quick agglutination was evaluated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this article was to estimate quantitative differences for GAPDH transcripts and poly(A) mRNA: (i) between oocytes collected from cumulus-oocyte complexes (COCs) qualified morphologically as grades A and B; (ii) between grade A oocytes before and after in vitro maturation (IVM); and (iii) among in vitro-produced embryos at different developmental stages. To achieve this objective a new approach was developed to estimate differences between poly(A) mRNA when using small samples. The approach consisted of full-length cDNA amplification (acDNA) monitored by real-time PCR, in which the cDNA from half of an oocyte or embryo was used as a template. The GAPDH gene was amplified as a reverse transcription control and samples that were not positive for GAPDH transcripts were discarded. The fold differences between two samples were estimated using delta Ct and statistical analysis and were obtained using the pairwise fixed reallocation randomization test. It was found that the oocytes recovered from grade B COCs had quantitatively less poly(A) mRNA (p < 0.01) transcripts compared with grade A COCs (1 arbitrary unit expression rate). In the comparison with immature oocytes (I arbitrary unit expression rate), the quantity of poly(A) mRNA did not change during IVM, but declined following IVF and varied with embryo culture (p < 0.05). Amplification of cDNA by real-time PCR was an efficient method to estimate differences in the amount of poly(A) mRNA between oocytes and embryos. The results obtained from individual oocytes suggested an association between poly(A) mRNA abundance and different morphological qualities of oocytes from COCs. In addition, a poly(A) mRNA profile was characterized from oocytes undergoing IVM, fertilization and blastocyst heating.
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Resumo:
The mm of this work was to evaluate the biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane to be used in guided tissue regeneration (GTR) Fibroblasts from human periodontal ligament (hPDLF) and keratinocytes (SCC9) were plated on P(VDF-TrFE)/BT and polytetrafluorethylene membranes at a cell density of 20.000 cells well(-1) and Cultured for up to 21 days Cell morphology, adhesion and proliferation were evaluated in hPDLF and keratinocytes, while total protein content and alkaline phosphatase (ALP) activity were assayed only for hPDLF Using a higher cell density. real-time polymerase chain reaction (PCR) was performed to assess the expression of typical genes of hPDLF, such as periostin, PDLs17, S100A4 and fibromodulin, and key phenotypic markers of keratinocytes, including involucrin, keratins 1. 10 and 14 Expression of the apoptotic genes bax, bcl-2 and Survivin was evaluated for both cultures hPDLF adhered and spread more oil P(VDF-TrFE)/BT, whereas keratinocytes showed a round shape on both membranes. hPDLF adhesion was greater oil P(VDF-TrFE)/BT at 2 and 4 h, while keratinocyte adhesion was similar for both membranes. Whereas proliferation was significantly higher for hPDLF on P(VDF-TrFE)/BT at days 1 and 7. no signs of keratinocyte proliferation could be noticed for both membranes Total protein content was greater on P(VDF-TrFE)/BT at 7, 14 and 21 days, and higher levels of ALP activity were observed oil P(VDF-TrFE)/BT at 21 days. Real-time PCR revealed higher expression of phenotypic markers of hPDLF and keratinocytes as well as greater expression of apoptotic genes in cultures grown on P(VDF-TrFE)/BT. These results indicate that, by favoring hPDLF adhesion. spreading. proliferation and typical mRNA expression, P(VDF-TrFE)/BT membrane should be considered an advantageous alternative for GTR (C) 2009 Acta Materialia Inc Published by Elsevier Ltd All rights reserved
Resumo:
Poly(L-lactic acid) (PLA) is a polymer of great technological interest, whose excellent mechanical properties, thermal plasticity and bioresorbability render it potentially useful for environmental applications, as a biodegradable plastic and as a biocompatible material in biomedicine. The interactions between an implant material surface and host cells play central roles in the integration, biological performance and clinical success of implanted biomedical devices. Osteoblasts from human alveolar bone were chosen to investigate the cell behaviour when in contact with PLA discs. Cell morphology and adhesion through osteopontin (OPN) and fibronectin (FN) expression were evaluated in the initial osteogenesis, as well as cell proliferation, alkaline phosphatase activity and bone nodule formation. It was shown that the polymer favoured cell attachment. Cell proliferation increased until 21 days but in a smaller rate when compared to the control group. On the other hand, ALP activity and bone mineralization were not enhanced by the polymer. It is suggested that this polymer favours cell adhesion in the early osteogenesis in vitro, but it does not enhance differentiation and mineralization. (C) Koninklijke Brill NV, Leiden, 2009
Resumo:
The purpose of this study was to compare, by mechanical in vitro testing, a 2.0-mm system made with poly-L-DL-lactide acid with an analogue titanium-based system. Mandible replicas were used as a substrate and uniformly sectioned on the left mandibular angle. The 4-hole plates were adapted and stabilized passively in the same site in both groups using four screws, 6.0 mm long. During the resistance-to-load test, the force was applied perpendicular to the occlusal plane at three different points: first molar at the plated side; first molar at the contralateral side; and between the central incisors. At 1 mm of displacement, no statistically significant difference was found. At 2 mm displacement, a statistically significant difference was observed when an unfavourable fracture was simulated and the load was applied in the contralateral first molar and when a favourable fracture was simulated and the load was applied between the central incisors. At the failure displacement, a statistically significant difference was observed only when the favourable fracture was simulated and the load was applied on the first molar at the plated side. In conclusion, despite more failure, the poly-L-DL-lactic acid-based system was effective.
Resumo:
The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Both gelatin and poly(vinyl alcohol) (PVA) can be cross linked with glutaraldehyde (GLU). In the case of gelatin, the GLU reacts with each e-NH2 functional group of adjacent lysine residues, while for PVA, the GLU reacts with two adjacent hydroxyl groups, forming acetal bridges. Thus it can be considered possible to cross link adjacent macromolecules of gelatin and PVA using GLU. In this context, the aims of this work were the development of biodegradable films based on blends of gelatin and poly(vinyl alcohol) cross linked with GLU, and the characterization of some of their main physical and functional properties. All the films were produced from film-forming solutions (FFS) containing 2 g macromolecules (PVA + gelatin)/100 g FFS, 25 g glycerol/100 g macromolecules, and 4 g GLU (25% solution)/100 g FFS. The FFS were prepared with two concentrations of PVA (20 or 50 g PVA/100 g macromolecules) and two reaction temperatures: 90 or 55 degrees C, applied for 30 min. The films were obtained after drying (30 degrees C/24 h) and conditioning at 25 degrees C and 58% of relative humidity for 7 days, and were then characterized. The results for the color parameters, mechanical properties, phase transitions and infrared spectra showed that some chemical modifications occurred, principally for the gelatin. However, in general, all the characteristics of the films were either typical of films based on blends of these macromolecules without cross linking, or slightly higher. A greater improvement in the properties of this material was probably not observed due to the crystallinity of the PVA, which has a melting point above 90 degrees C. The presence of microcrystals in the polymer chain probably reduced macromolecular mobility, hindering the reaction. Thus more research is necessary to produce biodegradable films with improved properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C(PVA)) Of two types of poly(vinyl alcohol) (PVA) and of the type (glycerol and sorbitol) and the concentration (C(P)) of plasticizers on some physical properties of biodegradable films based on blends of gelatin and PVA Using a response-surface methodology. The films were prepared with a film forming solutions (FFS) with 2 g of macromolecules (gelatin+PVA)/100 g de FFS. The responses analyzed were the mechanical properties, the solubility, the moisture Content. the color difference and the opacity. The linear model was statistically significant and predictive for puncture force and deformation. elongation at break, solubility in water, Moisture content and opacity. The CPVA affected strongly the elongation at break of the films. The interaction of the HD and the C(P) affected this property. Moreover. the puncture force was affected slightly by the C(PVA). Concerning the Solubility in water, the reduction of the HD increased it and this effect was greater for high CPVA Values. In general. the most important effect observed in the physical properties of the films was that of the plasticizer type and concentration. The PVA hydrolysis degree and concentration have an important effect only for the elongation at break, puncture deformation and solubility in water. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to study the effect of the poly(vinyl alcohol) (PVA) concentration on the thermal and viscoelastic properties of films based on blends of gelatin and PVA using differential scanning calorimetry (DSC) and dynamic-mechanical analysis (DMA). One glass transition was observed between 43 and 49 degrees C on the DSC curves obtained in the first scanning of the blended films, followed by fusion of the crystalline portion between 116 and 134 degrees C. However, the DMA results showed that only the films with 10% PVA had a single peak in the tan 5 spectrum. However, when the PVA concentration was increased the dynamic mechanical spectra showed two peaks on the tan 6 curves, indicating two T(g)s. Despite this phase separation behavior the Gordon and Taylor model was successfully applied to correlate T, as a function of film composition, thus determining k = 7.47. In the DMA frequency tests, the DMA spectra showed that the storage modulus values decreased with increasing temperature. The master curves for the PVA-gelatin films were obtained applying the TTS principle (T(r) = 100 degrees C). The WLF model was thus applied allowing for the determination of the constants C(1) and C(2). The values of these constants increased with increasing PVA concentrations in the blend: C(1) = 49-66 and C(2) = 463-480. These values were used to calculate the fractional free volume of the films at the T(g) and the thermal expansion coefficient of the films above the T(g). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol (R) 418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.