62 resultados para PHAGOCYTOSIS
Resumo:
We earlier demonstrated that nitric oxide (NO) is a fungicidal molecule against Sporothrix schenckii in vitro. In the present study we used mice deficient in inducible nitric oxide synthase (iNOS(-/-)) and C57BL/6 wild-type (WT) mice treated with N omega-nitro-arginine (Nitro-Arg-treated mice), an NOS inhibitor, both defective in the production of reactive nitrogen intermediates, to investigate the role of endogenous NO during systemic sporotrichosis. When inoculated with yeast cells of S. schenckii, WT mice presented T-cell suppression and high tissue fungal dissemination, succumbing to infection. Furthermore, susceptibility of mice seems to be related to apoptosis and high interleukin-10 and tumour necrosis factor-alpha production by spleen cells. In addition, fungicidal activity and NO production by interferon-gamma (IFN-gamma) and lipopolysaccharide-activated macrophages from WT mice were abolished after fungal infection. Strikingly, iNOS(-/-) and Nitro-Arg-treated mice presented fungal resistance, controlling fungal load in tissues and restoring T-cell activity, as well as producing high amounts of IFN-gamma Interestingly, macrophages from these groups of mice presented fungicidal activity after in vitro stimulation with higher doses of IFN-gamma. Herein, these results suggest that although NO was an essential mediator to the in vitro killing of S. schenckii by macrophages, the activation of NO system in vivo contributes to the immunosuppression and cytokine balance during early phases of infection with S. schenckii.
Resumo:
The D-mannose binding lectin ArtinM from Artocarpus integrifolia, previously known as KM+ and artocarpin. is considered a stimulant of Th1-type immunity, which is able to confer resistance to some intracellular pathogens. In addition, ArtinM induces neutrophil migration by haptotaxis through simultaneous interactions of its carbohydrate recognition domains (CRDs) with glycans expressed on the extracellular matrix and the neutrophil surface. In the present study, we have expanded the characterization of ArtinM as a neutrophil activator. Exposure of neutrophils to ArtinM for 15 min resulted in tyrosine phosphorylation of intracellular proteins, a process that was selectively inhibited by D-mannose or mannotriose. Shortly after stimulation, neutrophils secreted high levels of LTB(4) and underwent shedding of L-selectin from their surface. Exposure to ArtinM enhanced neutrophil functions, such as respiratory burst and zymozan and Listeria monocytogenes phagocytosis. In addition, ArtinM-stimulated neutrophils displayed increased CXCL-8 secretion and TLR2 gene transcription. These results demonstrate that ArtinM is able to induce potent neutrophil activation, a feature that should be strongly considered in the assessment of the lectin capacity to confer resistance against infections. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objectives: In this work, we searched for maternal separation effects on serum corticosterone levels and blood neutrophil activity in adult male A/J and C57BL/6 mouse offspring. Methods: 40 male A/J mice and 40 male C57BL/6 mice were divided within each strain into two groups. Mice in the maternal separation group were separated from their mothers (1 h/day) on postnatal days 0-13. Mice in the control group were left undisturbed. On postnatal day 45, blood was drawn from all mice and used to assess neutrophil activity by flow cytometry and serum corticosterone levels by radioimmunoassay. Results: The results showed that each mouse strain responded differently to maternal separation, but in both cases, serum corticosterone levels were affected. In both strains, adult mice that experienced maternal separation showed lower serum corticosterone levels than control mice. In relation to control mice kept together with their mothers, the levels of serum corticosterone were 72.7 and 36.36% lower in A/J and C57BL/6 mice submitted to maternal separation, respectively. The current findings showed that maternal separation increased neutrophil activity in mice after reaching adulthood. The observed effects, although in the same direction, differed between A/J and C57BL/6 mice. Maternal separation increased both the percentage and intensity of phagocytosis in C57BL/6 mice, but had no effects on A/J mice. Furthermore, maternal separation increased basal and propidium iodide-labeled Staphylococcus aureus-induced oxidative burst in A/J mice but did not affect oxidative burst in C57BL/6 mice. Finally, phorbol myristate acetate-induced oxidative burst increased in both strains. Conclusion: These results indicate that early maternal separation increases innate immunity, most likely by modifying hypothalamus-pituitary-adrenal axis activity. This suggests that maternal separation is a good model for stress which produces long-term neuroimmune changes whatever the animal species and strain used. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Synthetic type II pyrethroids induce anxiety, immunosuppresion or, alternatively, immunostimulatory effects in laboratory animals. Macrophages and neutrophils are known to be key elements in cellular immune responses. The present study was designed to investigate the in vivo effects of cyhalothrin (1.0 and 3.0 mg/kg/once daily for 7 days) on macrophage and neutrophil activities, using a flow cytometry method. Results showed that cyhalothrin treatment decreased the percentage and intensity of phagocytosis performed by macrophages, but did not alter these parameters in neutrophils: and also decreased basal neutrophil oxidative burst and increased S. aureus-induced neutrophil oxidative burst, but did not alter these responses in macrophages. The present results are discussed in the light of a possible indirect action of cyhalothrin on macrophage and neutrophil activities via hypothalamic pituitary adrenal (HPA) axis activation. A possible direct effect of cyhalothrin on macrophage and neutrophil activities is also considered. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The relevance and property of studies related to stress effects on immune function are undisputable. All studies conducted on stress-immune relationships, however, provide from physical and/or psychological stressors. Indeed, as far as it is of our knowledge brain-innate immune responses were not analyzed after anxiogenic-like drugs use. The present experiment was then undertaken to analyze the effects of picrotoxin (0.3, 0.6 and 1.0 mg/kg doses) on behavior, macrophage activity, serum corticosterone and noradrenaline (NE) levels and turnover in the brain of adult mice. Results showed that picrotoxin treatment in mice: (1) decreased motor and rearing activities in an open-field; (2) decreased the number of entries into the plus-maze open-arms and decreased the time spent in the exploration of the plus-maze open-arms; (3) decreased both motor activity and the level of holes exploration in the hole-board; (4) increased the levels of serum corticosterone in dose-dependent way; (5) increased noradrenaline (NE) and MHPG levels and NE turnover in the hypothalamus; and (6) increased Staphylococcus aureus and PMA-induced macrophage oxidative burst. However, and contrary to that reported after physical or psychological stress, this drug induced no effects on macrophage phagocytosis and NE levels and turnover in the frontal cortex. The present results are thus showing that picrotoxin induces some but not all neuro-innate immunity changes previously reported for inescapable foot-shock and psychological stressors in mice. These facts suggest that this chemical stressor triggers CNS pathways that might be somehow different from those fired by inescapable foot-shock and psychological stressors, leading to different neuro-innate immune responses. (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
Objective: Prolactin (PRL), a peptide hormone produced by the pituitary gland, is involved in the interaction between the neuroendocrine and immune system. Since dopamine receptor antagonists increase serum levels of PRL, both PRL and dopamine receptors might be involved in the modulation of macrophage activity, providing means of communication between the nervous and immune systems. This study evaluated the effects of PRL and the dopamine antagonist domperidone (DOMP) on macrophage activity of female rats. Methods: Oxidative burst and phagocytosis of peritoneal macrophages were evaluated by flow cytometry. Samples of peritoneal liquid from female rats were first incubated with PRL (10 and 100 nM) for different periods. The same procedure was repeated to evaluate the effects of DOMP (10 and 100 nM). Results: In vitro incubation of macrophages with 10 nM DOMP decreased oxidative burst, after 30 min, whereas the PMA-induced burst was decreased by DOMP 10 nM after 2 and 4 h. Treatment with PRL (10 and 100 nM) for 30 min decreased oxidative burst and rate of phagocytosis (10 nM). After 2 h of incubation, 10 nM PRL decreased oxidative burst and phagocytosis intensity, but increased the rate of phagocytosis. On the other hand, after 4 h, PRL 10 and 100 nM increased oxidative burst and the rate of phagocytosis, but decreased intensity of phagocytosis. Conclusions: These observations suggest that macrophage functions are regulated by an endogenous dopaminergic tone. Our data also suggest that both PRL and dopamine exert their action by acting directly on the peritoneal macrophage. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
The present study was designed to evaluate the effects of mice cohabitation with a sick conspecific cage mate on peritoneal macrophage activity and on resistance to Ehrlich tumor growth. Female mice housed in pairs were divided into control and experimental groups. One mouse of each control pair was inoculated with NaCl (0.1 ml/10 g) intraperitoneally and the other, called `companion of healthy partner` (CHP), was kept undisturbed. One animal of each experimental pair of mice was inoculated with 5.0 x 10(6) Ehrlich tumor cells intraperitoneally and the other, the subject of this study, was called `companion of sick partner` (CSP). Peritoneal macrophages were removed from CSP and CHP mice to analyze resident macrophage activity (experiment 1), macrophage activity after Mycobacterium bovis (experiment 2) or Ehrlich tumor cells (experiment 3) in vivo inoculations. The resistance of CSP and CHP mice to Ehrlich tumor growth was also analyzed (experiment 4). Differences between groups were not found on resident macrophage activity. However, Onco-BCG- and Ehrlich tumor-activated macrophages from CSP mice presented a decreased intensity and percentage of phagocytosis and an increased respiratory burst in the presence of Staphylococcus aureus stimulation in vitro. CSP animals at the same time displayed a decreased resistance to Ehrlich tumor growth. These data were discussed in light of a possible psychological stress effect imposed by the housing condition on mice`s peritoneal macrophage activity and, as a consequence, on their resistance to Ehrlich tumor growth. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
The objectives of this investigation were to understand transplacental transport of iron by secreted uteroferrin (UF) and haemophagous areas of water buffalo placenta and clarify the role(s) of blood extravasation at the placental-maternal interface. Placentomes and interplacentomal region of 51 placentae at various stages of gestation were fixed, processed for light and transmission electron microscopy, histochemistry and immunohistochemistry. Haemophagous areas were present in placentomes collected between 4 and 10 months of pregnancy. Perl`s reaction for ferric iron was negative in placentomes, but positive in endometrial glands. Positive staining for UF indicated areas in which it was being taken up by phagocytosis and/or fluid phase pinocytosis in areolae of the interplacentomal mesenchyme, with little staining in endometrial stroma. Imunohistochemistry detected UF in trophectoderm of haemophagous regions of placentomes and in other parts of the foetal villous tree, but the strongest immunostaining was in the epithelial cells and lumen of uterine glands. Ultrastructural analyses indicated that erythrophagocytosis was occurring and that erythrocytes were present inside cells of the chorion that also contained endocytic vesicles and caveolae. Results of this study indicate that both the haemophagous areas of placentomes and the areolae at the interface between chorion and endometrial glands are important sites for iron transfer from mother to foetal-placental tissues in buffalo throughout pregnancy.
Resumo:
Enzymes are crucial for the metabolism of macromolecular substrates. In the great majority of cells, most enzymes are constitutive. Nevertheless, inducible enzymes can predominate, determining specialized cell functions. Within this context, histochemistry/immunohistochemistry and biochemistry were used to investigate expression of peroxidase and reduced nicotinamide-adenine dinucleotide phosphate (NADPH)-oxidase, as well as the expression and activity of cathepsin D and acid phosphatase, in trophoblast cells within the endotheliochorial labyrinth and marginal hematoma of the term cat placenta. In the marginal hematoma, elevated Cathepsin D expression and activity was accompanied by erythrophagocytosis. In contrast, acid phosphatase activity was much more intense in the labyrinth, where metabolic exchanges occur. Peroxidase and NAD(P)H-oxidase were predominantly active in trophoblast cells within endosomal vesicles of different placental compartments, indicating that, although reactive oxygen species might participate in endosomal/lysosomal processes, they are not territorially specific or functional markers. These findings highlight differential characteristics of cathepsin D and acid phosphatase activity within each placental compartment, thereby contributing to the comprehension of the territorial role played by the placenta and facilitating future metabolic studies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Candida albicans is recognized by phagocytic cells through a set of recognition receptors patterns. Recently, we showed the importance of TLR2 in the regulation of neutrophil survival after C. albicans infection. In the present work, we analyzed the involvement of TLR4 in the recognition of C. albicans by neutrophils and macrophages. Our results show that the absence of functional TLR4 resulted in lower chemotaxis of neutrophils to the site of infection, lower levels of TNF-alpha, CXCL1 and nitric oxide, and dissemination and persistence of the pathogen in lymph nodes and spleen. In vitro, the phagocytic activity, nitric oxide production and myeloperoxidase activity, CXCL1, IL-1 beta production by neutrophils from TLR4-defective mice were not changed. In contrast, macrophages from TLR4-defective mice demonstrated lower phagocytosis and lower levels of CXCL1, IL-1 beta and TNF-alpha. Together, these data demonstrate that TLR4 signals are important for the recognition of C. albicans by macrophages and their absence allows persistence of the infection.
Resumo:
Background: Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) is a Gram-negative bacterium present in the oral cavity and is usually associated with localized aggressive periodontitis. Isolated antigens from A. actinomycetemcomitans can activate innate immune cells through Toll-like receptors (TLRs), which are molecules that recognize structural components conserved among microorganisms. In this study, we evaluate the role of TLR2 in the recognition of A. actinomycetemcomitans. Methods: Macrophages and neutrophils from knockout mice with targeted disruption of TLR2 (TLR2(-/-) mice) and wild-type mice were collected and used for the subsequent assays. The production of cytokines and chemokines was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of apoptotic cells was determined by flow cytometry. In addition, the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR2(-/-) mice were examined. Results: The results show that TLR2-deficient mice developed more severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly higher bone loss and inflammatory cell migration to periodontal tissues. The inflammatory cell influx into the peritoneal cavities of TLR2(-/-) mice was three-fold lower than that observed for the littermate controls. A significantly diminished production of the cytokines tumor necrosis factor-alpha and interleukin-1 beta as well as the chemokine CC-ligand-5 in the peritoneal cavities of TLR2(-/-) mice was observed. In addition, a high frequency of apoptotic cells in the inflammatory exudates from TLR2(-/-) mice was observed. Phagocytosis and nitric oxide production was diminished in cells from TLR2(-/-) mice, facilitating the dissemination of the pathogen to the spleen. Conclusion: The results of this study highlight the involvement of TLR2 in recognizing A. actinomycetemcomitans and its essential role in controlling A. actinomycetemcomitans infection. J Periodontot 2009,80:2070-2019.
Resumo:
Paracoccidioides brasiliensis is the etiologic agent of the Paracoccidioidomycosis the most common systemic mycosis in Latin America. Little is known about the regulation of genes involved in the innate immune host response to P. brasiliensis. We therefore examined the kinetic profile of gene expression of peritoneal macrophage infected with P. brasiliensis. Total RNA from macrophages at 6, 24 and 48 h was extracted, hybridized onto nylon membranes and analyzed. An increase in the transcription of a number of pro-inflammatory molecules encoding membrane proteins, metalloproteases, involved in adhesion and phagocytosis, are described. We observed also the differential expression of genes whose products may cause apoptotic events induced at 24 h. In addition, considering the simultaneous analyses of differential gene expression for the pathogen reported before by our group, at six hours post infection, we propose a model at molecular level for the P. brasiliensis-macrophage early interaction. In this regard, P. brasiliensis regulates genes specially related to stress and macrophages, at the same time point, up-regulate genes related to inflammation and phagocytosis, probably as an effort to counteract infection by the fungus. (c) 2007 Elsevier Masson SAS. All fights reserved.
Resumo:
Reproductive experience (i.e., pregnancy and lactation) induces physiological changes in mammals. We recently showed that a previous reproductive experience can modulate the activity of dopaminergic hypothalamic systems while decreasing serum prolactin (PRL) levels and oxidative burst activity in peritoneal macrophages. Dopamine receptor antagonists increase serum PRL levels, and both PRL and dopamine receptors might be involved in the modulation of macrophage activity, providing a means of communication between the nervous and immune systems. The present study evaluated the in vitro effects of PRL and the dopamine receptor 02 antagonist domperidone (DOMP) on the peritoneal activity of macrophages from primiparous and multiparous female rats during lactation. Oxidative bursts and phagocytosis in peritoneal macrophages were evaluated by flow cytometry. Primiparous and multiparous Wistar rats, during the period of lactation (i.e., days 5-7 after parturition) were used. Samples of peritoneal fluid from these rats were first incubated with PRL (10 and 100 nM) for different periods of time. The same procedure was repeated to evaluate the effects of DOMP (10 and 100 nM). Our results showed that macrophages from multiparous rats respond more effectively to in vitro incubation with PRL, especially with regard to oxidative bursts and the percentage of phagocytosis. Additionally, these effects were more pronounced after 30 min of incubation. These data suggest that reproductive experience is associated with a reduction in serum PRL levels, and cells in experienced female animals, including their macrophages, become more sensitive to the effects of PRL (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cells recruited by the innate immune response rely on surface-expressed molecules in order to receive signals from the local environment and to perform phagocytosis, cell adhesion, and others processes linked to host defense. Hundreds of surface antigens designated through a cluster of differentiation (CD) number have been used to identify particular populations of leukocytes. Surprisingly, we verified that the genes that encode Cd36 and Cd83 are constitutively expressed in specific neuronal cells. For instance, Cd36 mRNA is expressed in some regions related to circuitry involved in pheromone responses and reproductive behavior. Cd44 expression, reanalyzed and detailed here, is associated with the laminar formation and midline thalamic nuclei in addition to striatum, extended amygdala, and a few hypothalamic, cortical, and hippocampal regions. A systemic immune challenge was able to increase Cd44 expression quickly in the area postrema and motor nucleus of the vagus but not in regions presenting expressive constitutive expression. In contrast to Cd36 and Cd44, Cd83 message was widely distributed from the olfactory bulb to the brain stem reticular formation, sparing the striatopallidum, olivary region, and cerebellum. Its pattern of expression nevertheless remained strongly associated with hypothalamic, thalamic, and hindbrain nuclei. Unlike the other transcripts, Cd83 mRNA was rapidly modulated by restraint stress. Our results indicate that these molecules might play a role in specific neural circuits and present functions other than those attributed to leukocyte biology. The data also suggest that these surface proteins, or their associated mRNA, could be used to label neurons in specific circuits/regions. J. Comp. Neurol. 517:906-924, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
In the present study, the effects of trans-MUFA, elaidic acid (EA; 18 : 1-9t) and vaccenic acid (VA; 18 : 1-11t) on rat neutrophil functions were compared with those of cis-monounsaturated oleic acid (OA) (18 : 1-9c) and saturated stearic acid (SA; 18 : 0) (10-150 mu M). Trans-fatty acids enhanced neutrophil phagocytic capacity, superoxide (O(2)(center dot-)) and hydrogen peroxide production, and candidacidal activity. The same effects were observed for OA. Cells treated with trans-MUFA showed reduced production of NO(center dot), whereas those treated with OA showed an increase in production. Treatment with SA did not provoke significant effect on the parameters investigated. The increase in O(2)(center dot-) production induced by MUFA was not observed when diphenyleneiodonium, an NADPH oxidase inhibitor, was added to the medium. This finding suggests that MUFA stimulate neutrophil NADPH oxidase activity. The addition of 3-[1-[3-(dimethylamino)propyl]-1H-indol-3-yl]-4-(1H-inclol-3-yl)-1H-pyrrole-2,5-dione, a protein kinase C (PKC) inhibitor, and wortmannin, a phosphatidylinositol-3 kinase (PI3K) inhibitor, did not affect O(2)(center dot-) production induced by MUFA. Therefore, the mechanisms by which MUFA stimulate NADPH oxidase are not dependent on PKC and do not seem to involve PI3K. Experiments using Zn(2+), an inhibitor of NADPH oxidase H(+) channel, indicated that MUFA activate the NADPH oxidase complex in rat neutrophil due to opening of H(+) channel.