64 resultados para Orthogonal polynomial
Resumo:
The use of microalgae as live food to a wide variety of organisms is one of the most important aspects in aquaculture. Several commercial formulations have been available in the marine aquarium market in order to prepare artificial sea water (ASW). The present study accounted microalgae Chaetoceros calcitrans performance cultured using different ASW in comparison to natural seawater(NSW). it was carried out using red Sea, Coralife and oceanic, three different ASW brands and NSW as control. nonaerated cultures were grew in 400 mL with Conwy culture medium with five replicates each under defined conditions. All cultures began with an algal inoculum of 208.000 cells/mL. a 5-mL aliquot was removed daily from each culture for cells counts. data obtained using polynomial regression test demonstrated that all ASW brands reached higher algal density rates than the one with NSW, though the three ASW brands were significantly heterogeneous. C. calcitrans raised with oceanic and red Sea brands showed similar growth rates and both were higher than Coralife brand. the results suggest that all three ASW brands studied can be used in the culture of this microalgae specie.
Resumo:
Background: Patients with chronic obstructive pulmonary disease (COPD) can have recurrent disease exacerbations triggered by several factors, including air pollution. Visits to the emergency respiratory department can be a direct result of short-term exposure to air pollution. The aim of this study was to investigate the relationship between the daily number of COPD emergency department visits and the daily environmental air concentrations of PM(10), SO(2), NO(2), CO and O(3) in the City of Sao Paulo, Brazil. Methods: The sample data were collected between 2001 and 2003 and are categorised by gender and age. Generalised linear Poisson regression models were adopted to control for both short-and long-term seasonal changes as well as for temperature and relative humidity. The non-linear dependencies were controlled using a natural cubic spline function. Third-degree polynomial distributed lag models were adopted to estimate both lag structures and the cumulative effects of air pollutants. Results: PM(10) and SO(2) readings showed both acute and lagged effects on COPD emergency department visits. Interquartile range increases in their concentration (28.3 mg/m(3) and 7.8 mg/m(3), respectively) were associated with a cumulative 6-day increase of 19% and 16% in COPD admissions, respectively. An effect on women was observed at lag 0, and among the elderly the lag period was noted to be longer. Increases in CO concentration showed impacts in the female and elderly groups. NO(2) and O(3) presented mild effects on the elderly and in women, respectively. Conclusion: These results indicate that air pollution affects health in a gender-and age-specific manner and should be considered a relevant risk factor that exacerbates COPD in urban environments.
Resumo:
Objective: The purpose of this study was to evaluate the effect of 830-nm laser in blocking the action of nicotine on the viability of skin flap. Background data: The authors have analyzed the deleterious effect of cigarette smoke or nicotine on the skin flap alone with evidence of increased skin necrosis in the flap. Materials and methods: Twenty-four Wistar-albino rats were divided into three groups of eight animals each: Group 1 (control), subjected to a surgical technique to obtain a flap for cranial base, laser irradiation simulation, and a subcutaneous injection of saline; Group 2, similar to Group 1, with subcutaneous injection of nicotine (2mg/kg/day) for a period of 1 week before and 1 week after surgery; and Group 3, similar to Group 2, with skin flaps subjected to a lambda 830-nm laser irradiation. The laser parameters used were: power 30 mW, beam area 0.07cm(2), irradiance 429 mW/cm(2), irradiation time 84 sec, total energy 2.52J, and energy density 36J/cm(2). The laser was used immediately after surgery and for 4 consecutive days, in one point at 2.5 cm of the flap cranial base. The areas of necrosis were examined by two macroscopic analyses: paper template and Mini-Mop (R). The pervious blood vessels were also counted. Results: The results were statistically analyzed by ANOVA and post-test contrast orthogonal method (multiple comparisons), showing that the laser decreased the area of necrosis in flaps subjected to nicotine, and consequently, increased the number of blood vessels (p < 0.05). Conclusions: The laser proved to be an effective way to decrease the area of necrosis in rats subjected to nicotine, making them similar to the control group.
Resumo:
Mature weight breeding values were estimated using a multi-trait animal model (MM) and a random regression animal model (RRM). Data consisted of 82 064 weight records from 8 145 animals, recorded from birth to eight years of age. Weights at standard ages were considered in the MM. All models included contemporary groups as fixed effects, and age of dam (linear and quadratic effects) and animal age as covariates. In the RRM, mean trends were modelled through a cubic regression on orthogonal polynomials of animal age and genetic maternal and direct and maternal permanent environmental effects were also included as random. Legendre polynomials of orders 4, 3, 6 and 3 were used for animal and maternal genetic and permanent environmental effects, respectively, considering five classes of residual variances. Mature weight (five years) direct heritability estimates were 0.35 (MM) and 0.38 (RRM). Rank correlation between sires' breeding values estimated by MM and RRM was 0.82. However, selecting the top 2% (12) or 10% (62) of the young sires based on the MM predicted breeding values, respectively 71% and 80% of the same sires would be selected if RRM estimates were used instead. The RRM modelled the changes in the (co) variances with age adequately and larger breeding value accuracies can be expected using this model.
Resumo:
This paper studies a nonlinear, discrete-time matrix system arising in the stability analysis of Kalman filters. These systems present an internal coupling between the state components that gives rise to complex dynamic behavior. The problem of partial stability, which requires that a specific component of the state of the system converge exponentially, is studied and solved. The convergent state component is strongly linked with the behavior of Kalman filters, since it can be used to provide bounds for the error covariance matrix under uncertainties in the noise measurements. We exploit the special features of the system-mainly the connections with linear systems-to obtain an algebraic test for partial stability. Finally, motivated by applications in which polynomial divergence of the estimates is acceptable, we study and solve a partial semistability problem.
Resumo:
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624551]
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
It is shown that the families of generalized matrix ensembles recently considered which give rise to an orthogonal invariant stable Levy ensemble can be generated by the simple procedure of dividing Gaussian matrices by a random variable. The nonergodicity of this kind of disordered ensembles is investigated. It is shown that the same procedure applied to random graphs gives rise to a family that interpolates between the Erdos-Renyi and the scale free models.
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.
Resumo:
An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar <= 2n - 2 we have vertical bar Gamma(G)(X) vertical bar >= (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time algorithm for finding the immersion of any small tree in subgraphs G of (N, D, lambda)-graphs Lambda, as long as G contains a positive fraction of the edges of Lambda and lambda/D is small enough. In several applications of the Friedman-Pippenger theorem, including the ones in the original paper of those authors, the (n, d)-expander G is a subgraph of an (N, D, lambda)-graph as above. Therefore, our result suffices to provide efficient algorithms for such previously non-constructive applications. As an example, we discuss a recent result of Alon, Krivelevich, and Sudakov (2007) concerning embedding nearly spanning bounded degree trees, the proof of which makes use of the Friedman-Pippenger theorem. We shall also show a construction inspired on Wigderson-Zuckerman expander graphs for which any sufficiently dense subgraph contains all trees of sizes and maximum degrees achieving essentially optimal parameters. Our algorithmic approach is based on a reduction of the tree embedding problem to a certain on-line matching problem for bipartite graphs, solved by Aggarwal et al. (1996).
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
In this paper an alternative approach to the one in Henze (1986) is proposed for deriving the odd moments of the skew-normal distribution considered in Azzalini (1985). The approach is based on a Pascal type triangle, which seems to greatly simplify moments computation. Moreover, it is shown that the likelihood equation for estimating the asymmetry parameter in such model is generated as orthogonal functions to the sample vector. As a consequence, conditions for a unique solution of the likelihood equation are established, which seem to hold in more general setting.
Resumo:
Let A be a unital ring which is a product of possibly infinitely many indecomposable rings. We establish a criteria for the existence of a globalization for a given twisted partial action of a group on A. If the globalization exists, it is unique up to a certain equivalence relation and, moreover, the crossed product corresponding to the twisted partial action is Morita equivalent to that corresponding to its globalization. For arbitrary unital rings the globalization problem is reduced to an extendibility property of the multipliers involved in the twisted partial action.
Resumo:
The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Nino - Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however, are confounded by the large internal variance in the region. During MAM and JJA, the South Atlantic SST anomalies affect the magnitude and the meridional displacement of the ITCZ. In JJA, the ENSO has relatively little influence on the interannual variability of the simulated rainfall. During SON, however, the ENSO seems to counteract the effect of the subtropical South Atlantic SST variations on convection over South America.