120 resultados para Nonlinear gravitational waves
Resumo:
We present a study of scattering of massless planar scalar waves by a charged nonrotating black hole. Partial wave methods are applied to compute scattering and absorption cross sections, for a range of incident wavelengths. We compare our numerical results with semiclassical approximations from a geodesic analysis, and find excellent agreement. The glory in the backward direction is studied, and its properties are shown to be related to the properties of the photon orbit. The effects of the black hole charge upon scattering and absorption are examined in detail. As the charge of the black hole is increased, we find that the absorption cross section decreases, and the angular width of the interference fringes of the scattering cross section at large angles increases. In particular, the glory spot in the backward direction becomes wider. We interpret these effects under the light of our geodesic analysis.
Resumo:
This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wave fronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.
Resumo:
We study the stability of AdS black holes rotating in a single two-plane for tensor-type gravitational perturbations in D > 6 space-time dimensions. First, by an analytic method, we show that there exists no unstable mode when the magnitude a of the angular momentum is smaller than r(h)(2)/R, where r(h) is the horizon radius and R is the AdS curvature radius. Then, by numerical calculations of quasinormal modes, using the separability of the relevant perturbation equations, we show that an instability occurs for rapidly rotating black holes with a > r(h)(2)/R, although the growth rate is tiny (of order 10(-12) of the inverse horizon radius). We give numerical evidence indicating that this instability is caused by superradiance.
Resumo:
We have determined two-photon absorption and nonlinear refraction spectra of the 50BO(1.5) - (50-x)PbF(2) - xPbO glasses (with x = 25, 35, 50 cationic %) at the range of the 470 and 1550 nm. The replacement of fluor atoms by oxygen leads to an increase in the third-order susceptibility, due to the formation of non-bridging oxygens (NBO). The nonlinear index of refraction is one order of magnitude higher than the one for fused silica, and it increases almost twice for the sample with x = 50. This sample has also shown promising features for all-optical switching as well as for optical limiting. (C) 2011 Optical Society of America
Resumo:
We present a broadband (460-980 nm) analysis of the nonlinear absorption processes in bulk ZnO, a large-bandgap material with potential blue-to-UV photonic device applications. Using an optical parametric amplifier we generated tunable 1-kHz repetition rate laser pulses and employed the Z-scan technique to investigate the nonlinear absorption spectrum of ZnO. For excitation wavelengths below 500 nm, we observed reverse saturable absorption due to one-photon excitation of the sample, agreeing with rate-equation modeling. Two-and three-photon absorption were observed from 540 to 980 nm. We also determined the spectral regions exhibiting mixture of nonlinear absorption mechanisms, which were confirmed by photoluminescence measurements. (C) 2010 Optical Society of America
Resumo:
Time-resolved Z-scan measurements were performed in a Nd(3+)-doped Sr(0.61)Ba(0.39)Nb(2)O(6) laser crystal through ferroelectric phase transition. Both the differences in electronic polarizability (Delta alpha(p)) and cross section (Delta sigma) of the neodymium ions have been found to be strongly modified in the surroundings of the transition temperature. This observed unusual behavior is concluded to be caused by the remarkable influence that the structural changes associated to the ferro-to-paraelectric phase transition has on the 4f -> 5d transition probabilities. The maximum polarizability change value Delta alpha(p)=1.2x10(-25) cm(3) obtained at room temperature is the largest ever measured for a Nd(3+)-doped transparent material.
Resumo:
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]
Resumo:
In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
Resumo:
Alternative splicing of gene transcripts greatly expands the functional capacity of the genome, and certain splice isoforms may indicate specific disease states such as cancer. Splice junction microarrays interrogate thousands of splice junctions, but data analysis is difficult and error prone because of the increased complexity compared to differential gene expression analysis. We present Rank Change Detection (RCD) as a method to identify differential splicing events based upon a straightforward probabilistic model comparing the over-or underrepresentation of two or more competing isoforms. RCD has advantages over commonly used methods because it is robust to false positive errors due to nonlinear trends in microarray measurements. Further, RCD does not depend on prior knowledge of splice isoforms, yet it takes advantage of the inherent structure of mutually exclusive junctions, and it is conceptually generalizable to other types of splicing arrays or RNA-Seq. RCD specifically identifies the biologically important cases when a splice junction becomes more or less prevalent compared to other mutually exclusive junctions. The example data is from different cell lines of glioblastoma tumors assayed with Agilent microarrays.
Resumo:
The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena`s correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of d-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully d-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low- frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.
Resumo:
Monteiro, AG, Aoki, MS, Evangelista, AL, Alveno, DA, Monteiro, GA, Picarro, IDC, and Ugrinowitsch, C. Nonlinear periodization maximizes strength gains in split resistance training routines. J Strength Cond Res 23(4): 1321-1326, 2009-The purpose of our study was to compare strength gains after 12 weeks of nonperiodized (NP), linear periodized (LP), and nonlinear periodized (NLP) resistance training models using split training routines. Twenty-seven strength-trained men were recruited and randomly assigned to one of 3 balanced groups: NP, LP, and NLP. Strength gains in the leg press and in the bench press exercises were assessed. There were no differences between the training groups in the exercise pre-tests (p > 0.05) (i.e., bench press and leg press). The NLP group was the only group to significantly increase maximum strength in the bench press throughout the 12-week training period. In this group, upper-body strength increased significantly from pre-training to 4 weeks (p < 0.0001), from 4 to 8 weeks (p = 0.004), and from 8 weeks to the post-training (p < 0.02). The NLP group also exhibited an increase in leg press 1 repetition maximum at each time point (pre-training to 4 weeks, 4-8 week, and 8 weeks to post-training, p < 0.0001). The LP group demonstrated strength increases only after the eight training week (p = 0.02). There were no further strength increases from the 8-week to the post-training test. The NP group showed no strength increments after the 12-week training period. No differences were observed in the anthropometric profiles among the training models. In summary, our data suggest that NLP was more effective in increasing both upper- and lower-body strength for trained subjects using split routines.
Resumo:
The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.
Resumo:
In this paper, nonlinear dynamic equations of a wheeled mobile robot are described in the state-space form where the parameters are part of the state (angular velocities of the wheels). This representation, known as quasi-linear parameter varying, is useful for control designs based on nonlinear H(infinity) approaches. Two nonlinear H(infinity) controllers that guarantee induced L(2)-norm, between input (disturbances) and output signals, bounded by an attenuation level gamma, are used to control a wheeled mobile robot. These controllers are solved via linear matrix inequalities and algebraic Riccati equation. Experimental results are presented, with a comparative study among these robust control strategies and the standard computed torque, plus proportional-derivative, controller.
Resumo:
This paper deals with the application of the lumped dissipation model in the analysis of reinforced concrete structures, emphasizing the nonlinear behaviour of the materials The presented model is based on the original models developed by Cipollina and Florez-Lopez (1995) [12]. Florez-Lopez (1995) [13] and Picon and Florez-Lopez (2000) [14] However, some modifications were introduced in the functions that control the damage evolution in order to improve the results obtained. The efficiency of the new approach is evaluated by means of a comparison with experimental results on reinforced concrete structures such as simply supported beams, plane frames and beam-to-column connections Finally, the adequacy of the numerical model representing the global behaviour of framed structures is investigated and the limits of the analysis are discussed (C) 2009 Elsevier Ltd All rights reserved