63 resultados para Nitrogen cicle
Resumo:
The short-term effects of surface lime application and black oat (Avena strigosa Schreb.) residues, with or without N fertilization, were evaluated in a long-term no-till (NT) system on a sandy clay loam, a kaolinitic, thermic Typic Hapludox from the state of Parana, Brazil. The main plot treatments were: control and dolomitic lime applied on soil surface at 8 Mg ha(-1). Three treatments with crop residues were evaluated on the subplots: (i) fallow, (ii) black oat residues, and (iii) black oat residues aft er N fertilization at 180 kg ha(-1). Black oat dry biomass was not affected by the treatments during 3 yr. Surface liming increased soil pH, microbial biomass, microbial activity, and bacterial/fungal ratio at the soil surface (0-5 cm), resulting in increased amino acid turnover, water-soluble humic substances formation, and N mineralization and nitrification. While the application of black oat did increase the soil pH, overall it had much less effect on soil biological processes and C and N pools than did lime. We concluded that black oat cannot replace the need for lime to optimize crop production in these tropical NT systems. In the long term, however, black oat should aid in the amelioration of acidity and replenishment of soil organic C pools and should help reduce erosion. Overall, this study suggests that overapplication of inorganic fertilizer N may occur in some tropical NT systems. Further experiments are required in NT systems to investigate the use of slow-release N fertilizers in combination with lime and black oat as a mechanism to reduce acidification and promote sustainability.
Resumo:
Nitrogen (N) and potassium (K) are usually found in higher concentrations than other macronutrients in apple (Malus x domestica Borkh) fruits and are most frequently associated with changes in fruit quality. The aim of this article was to evaluate the effects of N and K fertilization on some fruit quality attributes of Fuji apple. The experiment was conducted at Sao Joaquim, State of Santa Catarina, Brazil, during 2004 and 2005. A factorial design was used with N and K annual fertilizer rates (0, 50, 100, and 200 kg ha(-1) of N and K2O) replicated in three orchards. Fifteen days prior to harvest, three fruit samples were collected from each treatment and site. One sample was used for total soluble solid content (TSS), titratable acidity, pulp firmness, and fruit color parameter analyses, and the other samples were refrigerated in a conventional atmosphere for 3 and 6 months for subsequent determination of fruit quality. Nitrogen fertilization negatively affected fruit color, flesh firmness, and TSS content. These same variables were positively affected by K fertilization, except for flesh firmness.
Resumo:
Nitrogen fertilization in common bean crops under no-tillage and conventional systems. Nitrogen fertilizer is necessary for high yields in common bean crops and N responses under conditions of no-tillage and conventional systems are still basic needs. Thus, the objective of this research was to evaluate the effect of N application and common bean yield in no-tillage and conventional systems. The experimental design was a randomized block in a factorial scheme (2x8+1) with four replications. The treatments were constituted by the combination of two N doses (40 and 80 kg ha(-1)) applied at side dressing at eight distinct stadia during vegetative development of the common bean (V(4-3), V(4-4), V(4-5), V(4-6), V(4-7), V(4-8), V(4-9) and V(4-10)), in addition to a control plot without N in side dressing. The experiment was conducted over two years (2002 and 2003) in no-tillage on millet crop residues and conventional plow system. It was concluded that N fertilizer at the V(4) stadium of common bean promotes similar seed yields in no-tillage and conventional systems. Yield differences between no-tillage and conventional systems are inconsistent in the same agricultural area.
Resumo:
The effects of combined nitrogen and sulphur fertilisation on the dynamics of leaf and tiller appearance in Marandu palisadegrass (Brachiaria brizantha cv. Marandu) and its impact on dry matter production were evaluated in a greenhouse study. Grass seedlings were grown in pots filled with a soil classified as an Entisol and were harvested after 43 days, a further 35 days and finally after 48 more days. Five rates of N (0, 100, 200, 300 and 400 mg/dm(3)) and 5 rates of S (0, 10, 20, 30 and 40 mg/dm(3)) were tested in an incomplete factorial design with 4 replications. Leaf and tiller development were monitored every 3 days by counting the appearance of recently expanded leaves and new basal tillers. The phyllochron and thermal time between appearance of tillers decreased as N and S fertiliser levels increased to about 300 and 25 mg/dm(3), respectively, then tended to increase. In contrast, leaf and tiller appearance rates increased with the supply of these nutrients to similar levels, then tended to decline. Leaf and tiller production and dry matter yields were affected by both N and S levels, with the role of S increasing as the growth phases increased.
Resumo:
The effect of four irrigation levels (50; 75; 100 and 150% of the evaporation in the class A pan) and four levels of N (0,075; 0, 150; 0,225 and 0,300 kg(-1)), were evaluated on productivity and components of production of the watermelon `Charleston Gray`. The experiment was conducted under field conditions, from October/2003 to January/2004, using a randomized split-plot design, with the factor depths in plot and depths of N in split-plot. It was verified that the factors water and nitrogen presented a highly significant effect in the yield of watermelon, while the interaction among the factors was not significant. The maximum productivity of the watermelon (68.59 Mg ha(-1)) was obtained with 421 mm of water and 267 kg ha(-1) of N. The water was more efficiently used with increments in dosage of N, being the maximum value observed of 279.54 kg ha(-1) mm(-1), obtained with a depth of water of 205 mm and a depths of N of 225 kg ha(-1). The maximum efficiency of the use of the water for the nitro en was 221 kg ha(-1) mm(-1), for 249 kg ha(-1) of N. The sugar content of the watermelon, measured in degrees Brix, was affected by the depths of irrigation, depths of N and by its interactions.
Resumo:
An adequate supply of nitrogen is essential for high yield of common bean seeds; however, the responses to this nutrient in no-tillage systems can vary in function of the species and the amount of straw present. The aim of this research was to evaluate response of the common bean to N in no-tillage systems over maize, millet and Brachiaria brizantha crop residues. Three experiments were conducted, one for each gramineous species. The experimental design was a randomized block in a 5x2x2 factorial scheme, with five N doses (0, 30, 60, 90, 120 kg ha(-1)), in two distinct stadia during the vegetative development (3(rd) and 6(th) trifoliate leaf) and two common bean cultivars (IPR Juriti and Perola), with four replications. The IPR Juriti produced a greater number of pods per plant and showed lower mass per 100 seeds than Perola. It did not show variation in bean yield when the sidedressing N application was carried out in the 3(rd) or 6(th) trifoliate leaf stadia. Based on the obtained results, one concludes that the seed productivity of common beans increases linearly with N doses in a no-tillage system over maize residues.
Resumo:
Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO(2) involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO(2) released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO(2) from alcoholic fermentation, without any treatment, or using pure CO(2) from cylinder. The experiments were carried out at 120 mu mol photons m(-2) s(-1) in tubular photobioreactor at different dilution rates (0.2 <= D <= 0.8 d(-1)). Using CO(2) from alcoholic fermentation, maximum steady-state cell concentration (2661 +/- 71 mg L(-1)) was achieved at D 0.2 d(-1), whereas higher dilution rate (0.6 d(-1)) was needed to maximize cell productivity (839 mg L(-1) d(-1)). This value was 10% lower than the one obtained with pure CO(2), and there was no significant difference in the biomass protein content. With D 0.8 d(-1), it was possible to obtain 56% +/- 1.5% and 50% +/- 1.2% of protein in the dry biomass, using pure CO(2) and CO(2) from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO(2) from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 650-656, 2011
Resumo:
This work is focused on the influence of dilution rate (0.08 <= D <= 0.32 d(1)) on the continuous cultivation and biomass composition of Arthrospira (Spirulina) platensis using three different concentrations of ammonium chloride (c(No) = 1.0, 5.0 and 10 mol m (3)) as nitrogen source. At c(No) = 1.0 and 5.0 mol m (3) the biomass protein content was an increasing function of D, whereas, when using c(No) = 10 mol m (3), the highest protein content (72.5%) was obtained at D = 0.12 d (1). An overall evaluation of the process showed that biomass protein content increased with the rate of nitrogen supply (D c(No)) up to 72.5% at D c(No) = 1.20 mol m (3) d (1). Biomass lipid content was an increasing function of D only when the nitrogen source was the limiting factor for the growth (D c(No) <= 0.32 mol m (-3) d (1)), which occurred solely with c(No), = 1.0 mol m (3). Under such conditions, A. platensis reduced its nitrogen reserve in the form of proteins, while maintaining almost unvaried its lipid content. The latter was affected only when the concentration of nitrogen was extremely low (c(No) = 1.0 mol m (3)). The most abundant fatty acids were the palmitic (45.8 +/- 5.20%) and the gamma-linolenic (20.1 +/- 2.00%) ones. No significant alteration in the profiles either of saturated or unsaturated fatty acids was observed with c(No) <= 5.0 mol m (3), prevailing those with 16 and 18 carbons. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Arthrospira platensis was cultivated in minitanks at 13 klux, using a mixture of KNO(3) and NH(4)Cl as nitrogen source. Fed-batch daily supply of NH(4)Cl at exponentially-increasing feeding rate allowed preventing ammonia toxicity and nitrogen deficiency, providing high maximum cell concentration (X(m)) and high-quality biomass (21.85 mg chlorophyll g cells(-1); 20.5% lipids; 49.8% proteins). A central composite design combined to response surface methodology was utilized to determine the relationships between responses (X(m), cell productivity and nitrogen-to-cell conversion factor) and independent variables (KNO(3) and NH(4)Cl concentrations). Under optimum conditions (15.5 mM KNO3; 14.1 mM NH(4)Cl), X(m) was 4327 mg L(-1), a value almost coincident with that obtained with only 25.4 mM KNO(3), but more than twice that obtained with 21.5 mM NH(4)Cl. A 30%-reduction of culture medium cost can be estimated when compared to KNO(3)-batch runs, thus behaving as a cheap alternative for the commercial production of this cyanobacterium. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Arthospira (Spirulina) platensis (Nordstedt) Gomont was autotrophically cultivated for biomass production in repeated fed-batch process using urea as nitrogen source, with the aim of making large-scale production easier, increasing cell productivity and then reducing the production costs. It was investigated the influence or the ratio of renewed volume to total volume (R), the Urea feeding time (t(f)) and the number of successive repealed fed-batch cycles on the maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion yield (Y(x/n)), maximum specific growth rate (mu(m)) and protein content of, dry biomass. The experimental results demonstrated chat R=0.80 and t(f) = 6d were the best cultivation conditions, being able to simultaneously ensure, throughout the three fed-batch cycles, the highest average values of three of the five responses (X(m) = 2101 +/- 113 mg L(-1), P(x) = 219 +/- 13 mg L(-1) d(-1) and Y(x/n) = 10.3 +/- 0.8,g g(-1)). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We show indirect evidences for the possible involvement of NIT-2-like binding motifs in transcription modulation of the PbGP43 gene, which codes for an important antigen from the human fungal pathogen Paracoccidioides brasiliensis. This investigation was motivated by the finding of 23 NIT2-like sites within the proximal -2047 nucleotides of the PbGP43 5` intergenic region from the Pb339 isolate. They compose four clusters, two of them identical. We found four NIT2-containing probes that were positive in electrophoretic mobility shift assays and further analyzed them. PbGP43 could be modulated by nitrogen primary sources in Pb339, Pb3 and Pb18 isolates, as observed by reverse transcription (RT) real time-PCR. Gene reporter assays conducted in Aspergillus nidulans suggested that the minimal fragment responsible for nitrogen modulation lies within -480 bp of the PbGP43 gene. This is the first report on PbGP43 transcription modulation in response to nitrogen primary sources, which might help understand its regulation during infection. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This study aims to evaluate the feasibility of using simple techniques - pollen abortion rates, passive diffusive tubes (NO(2)) and trace element accumulation in tree barks - when determining the area of influence of pollution emissions produced in a traffic corridor. Measurements were performed at 0, 60 and 120 meters from a major road with high vehicular traffic, taking advantage of a sharp gradient that exists between the road and a cemetery. NO(2) values and trace elements measured at 0 meters were significantly higher than those measured at more distant points. Al, S. Cl, V. Fe, Cu, and Zn exhibited a higher concentration in tree barks at the vicinity of the traffic corridor. The same pattern was observed for the pollen abortion rates measured at the three different sites. Our data suggests that simple techniques may be applied either to validate dispersion land-based models in an urban settings or, alternatively, to provide better spatial resolution to air pollution exposure when high-resolution pollution monitoring data are not available. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability of oxygen. Data suggest that yeast strains vary in their response to the nitrogen source`s complex structure and to oxygen availability. In addition, the amount of trehalose produced could be correlated with the fermentation performance of the different yeasts, suggesting that efficient fuel ethanol production depends on finding conditions which are appropriate for a particular strain, considering demand and dependence on available nitrogen sources in the fermentation medium.
Resumo:
Glucose and fructose fermentations by industrial yeasts strains are strongly affected by both the structural complexity of the nitrogen Source and the availability of oxygen. In this Study two Saccharomyces cerevisiae industrial wine strains were grown, under shaken and static conditions, in a media containing either a) 20% (w/v) glucose, or b) 10% (w/v) fructose and 10% (w/v) glucose or c) 20% (w/v) fructose, all supplemented with nitrogen Sources varying from a single ammonium salt (ammonium Sulfate) to free amino acids (casamino acids) and peptides (peptone). Data Suggest that 1 complex Structured nitrogen source is not submitted to the same control mechanisms as those involved in the utilization of simpler structured nitrogen Sources, and mutual interaction between carbon and nitrogen Sources, including the mechanisms involved ill the regulation of aerobic/anaerobic metabolism, may play in important role in defining yeast fermentation performance and the differing response to the structural complexity of the nitrogen Source, with a strong impact oil fermentation performance.
Resumo:
Purpose: Adequate energy provision and nitrogen losses prevention of critically ill patients are essentials for treatment and recovery. The aims of this study were to evaluate energy expenditure (EE) and nitrogen balance (NB) of critically ill patients, to classify adequacy of energy intake (El), and to verify adequacy of El capacity to reverse the negative NB. Methods: Seventeen patients from an intensive care unit were evaluated within a 24-hour period. Indirect calorimetry was performed to calculate patient`s EE and Kjeldhal for urinary nitrogen analysis. The total El and protein intake were calculated from the standard parenteral and enteral nutrition infused. Underfeeding was characterized as El 90% or less and overfeeding as 110% or greater of EE. The adequacy of the El (El EE(-1) x 100) and the NB were estimated and associated with each other by Spearman coefficient. Results: The mean EE was 1515 +/- 268 kcal d(-1) and most of the patients (11/14) presented a negative NB (-8.2 +/- 4.7 g.d(-1)). A high rate (53%) of inadequate energy intake was found, and a positive correlation between El EE(-1) and NB was observed (r = 0.670; P = .007). Conclusion: The results show a high rate of inadequate El and negative NB, and equilibrium between El and EE may improve NB. Indirect calorimetry can be used to adjust the energy requirements in the critically ill patients. (C) 2010 Elsevier Inc. All rights reserved.