76 resultados para Net nitrogen mineralization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the design of a new reactor configuration - an upflow fixed-bed combined anaerobic-aerobic reactor - can operate as a single treatment unit for the removal of nitrogen (approximate to 150 mg N/L) and organic matter (approximate to 1300 mg COD/L) from Lysine plant wastewater. L-Lysine, an essential amino acid for animal nutrition, is produced by fermentation from natural raw materials of agricultural origin, thus generating wastewater with high contents of organic matter and nitrogen. The best operational condition of the reactor was obtained with a hydraulic retention time of 35 h (21 h in the anaerobic zone and 14 h in the aerobic zone) and a recycling ratio (R) of 3.5. In this condition, the COD, total Kjeldahl nitrogen (TKN), and total nitrogen (TN) removal efficiencies were 97%, 96%, and 77%, respectively, with average effluent concentrations of 10 +/- 36 mg COD/L, 2 +/- 1 mg NH(4)(+)-N/L, 8 +/- 3 mg Org-N/L, 1 +/- 1 mg NH(2)(-)-N/L, and 26 +/- 23 mg NH(3)(-)-N/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory scale activated sludge sequencing batch reactor was operated in order to obtain total removal of influent ammonia (200; 300 and 500 mg NH(3)-N.L(-1)) with sustained nitrite accumulation at the end of the aerobic stages with phenol (1,000 mg C(6)H(5)OH.L(-1)) as the carbon source for denitrifying microorganisms during the anoxic stages. Ammonia removal above 95% and ratios of (NO(2)(-)-N / (NO(2)(-)-N + NO(3)(-)-N)) ranging from 89 to 99% were obtained by controlling the dissolved oxygen concentration (1.0 mg O(2).L(-1)) and the pH value of 8.3 during the aerobic stages. Phenol proved to be an adequate source of carbon for nitrogen removal via nitrite with continuous feeding throughout part of the anoxic stage. Nitrite concentrations greater than 70.0 mg NO(2)(-)-N.L(-1) inhibited the biological denitritation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature gas nitrided AISI 304L austenitic stainless steel containing 0.55 wt% N in solid solution, was corrosion, erosion and corrosion-erosion tested in a jet-like device, using slurry composed of 3.5% NaCl and quartz particles. Scanning electron microscopy analysis of the damaged surfaces, mass loss measurements and electrochemical test results were used to understand the effect of nitrogen on the degradation mechanisms. Increasing the nitrogen content improved the corrosion, erosion and corrosion-erosion resistance of the AISI 304L austenitic stainless steel. Smoother wear mark contours observed on the nitrided surfaces indicate a positive effect of nitrogen on the reduction of the corrosion-erosion synergism. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of Cr and N in a high-temperature gas-nitrided stainless steel was measured by using a scanning electron microscope-coupled wavelength-dispersive X-ray spectrometer and the results were related to the microhardness profile of the hardened case. The experimental spectrometric procedure was optimized to consistently measure N contents varying between 0.1 and 0.8 wt.% in martensite and between 18.3 and 21.6 wt.% in nitrides, as well as Cr contents ranging from 11.5 to 17.0 wt.%. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat treated electrical steel laminations have shown evidence of low ductility behavior, characterized by a small number of bends till fracture, on repeated bending tests. The laminations were produced using a new grade of electrical steel with much lower aluminum content than usual. The problem happens when the oxygen potential (measured by the dew point of the atmosphere) of the heat treatment atmosphere is abnormally high. Furthermore, ductility can be restored by a low-oxygen potential heat treatment. Although the heat treatment resulted in a loss of ductility, the magnetic properties were not deteriorated. The low ductility samples always show intergranular fracture, whereas the un-treated laminations fracture by cleavage. The low ductility is associated with the formation of silicon manganese nitride precipitates formed at grain boundaries, although they are not the cause of the low ductility. Ductility could be restored by a low dew point heat treatment but the inclusions remained in the grain boundaries. The low ductility and its recovery must be ascribed to the presence of nitrogen atoms segregated to the grain boundaries when the heat treatment atmosphere has a high oxygen potential. The lack of aluminum in the composition of the steel hinders the scavenging effect of this element on nitrogen atoms in solution in the steel. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specimens of a UNS S31803 steel were submitted to high temperature gas nitriding and then to vibratory pitting wear tests. Nitrided samples displayed fully austenitic microstructures and 0.9 wt. % nitrogen contents. Prior to pitting tests, sample texture was characterized by electron backscattering diffraction, EBSD. Later on, the samples were tested in a vibratory pit testing equipment using distilled water Pitting tests were periodically interrupted to evaluate mass loss and to characterize the surface wear by SEM observations. At earlier pit erosion, stages intense and highly heterogeneous plastic deformation inside individual grains was observed. Later on, after the incubation period, mass loss by debris detachment was observed. Initial debris micro fracturing was addressed to low cycle fatigue. Damage started at both sites, inside the grains and grain boundaries. The twin boundaries were the most prone to mass-loss incubation. Grains with (101) planes oriented near parallel to the sample surface displayed higher wear resistance than grains with other textures. This was attributed to lower resolved stresses for plastic deformation inside the grains with (101)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high nitrogen austenitic stainless steel (0.9wt% N) and an ordinary 304 austenitic stainless steel were submitted to cavitation-erosion tests in a vibratory apparatus operating at a frequency of 20 kHz. The high nitrogen stainless steel was obtained by high temperature gas nitriding a 1-mm thick strip of an UNS 31803 duplex stainless steel. The 304 austenitic stainless steel was used for comparison purposes. The specimens were characterized by scanning electron microscopy and Electron Back Scatter Diffraction. The surface of the cavitation damaged specimens was analyzed trying to find out the regions where cavitation damage occurred preferentially. The distribution of sites where cavitation inception occurred was extremely heterogeneous, concentrating basically at (i) slip lines inside some grains and (ii) Sigma-3 coincidence site lattice (CSL) boundaries (twin boundaries). Furthermore, it was observed that the CE damage spread faster inside those grains which were more susceptible to damage incubation. The damage heterogeneity was addressed to plasticity anisotropy. Grains in which the crystallographic orientation leads to high resolved shear stress show intense damage at slip lines. Grain boundaries between grains with large differences in resolved shear stress where also intensely damaged. The relationship between crystallite orientation distributions, plasticity anisotropy and CE damage mechanisms are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon carbide thin films (Si(x)C(y)) were deposited in a RF (13.56 MHz) magnetron sputtering system using a sintered SiC target (99.5% purity). In situ doping was achieved by introducing nitrogen into the electric discharge during the growth process of the films. The N(2)/Ar flow ratio was adjusted by varying the N(2) flow rate and maintaining constant the Ar flow rate. The structure, composition and bonds formed in the nitrogen-doped Si (x) C (y) thin films were investigated by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Raman spectroscopy and Fourier transform infrared spectrometry (FTIR) techniques. RBS results indicate that the carbon content in the film decreases as the N(2)/Ar flow ratio increases. Raman spectra clearly reveal that the deposited nitrogen-doped SiC films are amorphous and exhibited C-C bonds corresponding to D and G bands. After thermal annealing, the films present structural modifications that were identified by XRD, Raman and FTIR analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the behavior of the association between atrazine and glyphosate in the soil through mineralization and degradation tests. Soil treatments consisted of the combination of a field dose of glyphosate (2.88 kg ha-1) with 0, 1/2, 1 and 2 times a field dose of atrazine (3.00 kg ha-1) and a field dose of atrazine with 0, 1/2, 1 and 2 times a field dose of glyphosate. The herbicide mineralization rates were measured after 0, 3, 7, 14, 21, 28, 35, 42, 49, 56 and 63 days of soil application, and degradation rates after 0, 7, 28 and 63 days. Although glyphosate mineralization rate was higher in the presence of 1 (one) dose of atrazine when compared with glyphosate alone, no significant differences were found when half or twice the atrazine dose was applied, meaning that differences in glyphosate mineralization rates cannot be attributed to the presence of atrazine. On the other hand, the influence of glyphosate on atrazine mineralization was evident, since increasing doses of glyphosate increased the atrazine mineralization rate and the lowest dose of glyphosate accelerated atrazine degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C(4) grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m x 1 m, and 3 m x 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by similar to 4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r(2) = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r(2) =0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three-and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined similar to 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 mu mol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by similar to 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 mu mol C mol N(-1) s(-1) at 20 degrees C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation of irrigated Thanzania grass growth based on photothermal units, nitrogen fertilization and water availability. The mathematical model to predict the forage yield using photothennal units was utilized with success in Elephant grass, Thanzania and Brachiaria niziziensis in the absence of water stress and nitrogen stress. The aim of this study was to propose models to estimate the forage yield of Thanzania grass under different irrigation (25, 50,75, 100 e 125% of ETc) and nitrogen level in various regions of Brazil. As such, models were developed to estimate the dry matter production of Panicum maximum Jacq. frass cv Thanzania in different irrigation and nitrogen levels, using photothermal units. The models were adjusted to doses of 0, 30, 60, 110 and 270 kg of N ha(-1), doses were divided in applications after each evaluation, with a rest cycle of 35 days. The adjusted model presented good performance in predicting dry matter production of Thanzania grass, with r(2) = 0.9999. The results made it possible to verify that the proposed model can be used to predict forage production in different regions of Brazil. It can be estimated, with good precision. The production of Thanzania grass dry matter can be accurately estimated in specific places (in function of latitude and time of year), with the maximum and minimum temperature values.