61 resultados para Myocardial ultrastructure
Resumo:
Objective: To determine the frequency of cardiac alterations in necropsies of AIDS patients in pre-HAART era and better understand the pathogenesis of HIV-related cardiomyopathy. Design: Retrospective study of 94 complete necropsies. Method: Macroscopic, histopathologic (histochemical,immunohistochemical and in situ hybridization techniques) and ultra structural myocardial evaluation (23 cases). Results: Cardiac alterations were observed in 94.4%; 74% showed variable degrees of cardiac dilation not related to known cardiovascular diseases. Eighty-two percent (81.8%) of patients with biventricular dilation showed diffuse-regressive alterations (thinning and waving cardiomyocytes with increase of lipofuscin pigment granules). Myocarditis was diagnosed in 27 cases (28.7%), 16 (59.3%) of known etiology. The ultra structural study has revealed cardiomyocytes alterations (mitochondriosis, loss of myofibrils, increase in the amount of perinuclear-lipofuscin pigment granules) associated to activation signals of capillary-endothelial cells (enhancement of pseudopodia and transcellular channels). Cardiomyocytes` apoptosis was demonstrated at structural level in 10 (43.5%) patients; tumor necrosis factor alpha (TNF alpha) was detected in 17/18 cases. Conclusions: This pioneer study described the association of histopathological and ultra structural findings (thinning and waving cardiomyocytes with increase of lipofuscin pigment granules, mitochondriosis and loss of myofibrils) with different degrees of cardiac-chamber dilation probably representing a spectrum of alterations that would lead to myocardial dysfunction and development of HIV-related cardiomyopathy. Cardiomyocytes` apoptosis observed at ultra structural level and demonstration of TNF alpha associated to described alterations suggest that this cytokine plays an important role in both negative-inotropic effect and capacity to induce apoptosis through death receptor-controlled pathway. (C) 2008 Published by Elsevier Ireland Ltd.
Resumo:
Exposure to air pollution can elicit cardiovascular health effects. Children and unborn fetuses appear to be particularly vulnerable. However, the mechanisms involved in cardiovascular damage are poorly understood. It has been suggested that the oxidative stress generated by air pollution exposure triggers tissue injury. To investigate whether prenatal exposure can enhance oxidative stress in myocardium of adult animals, mice were placed in a clean chamber (CC, filtered urban air) and in a polluted chamber (PC, Sao Paulo city) during the gestational period and/or for 3 mo after birth, according to 4 protocols: control group-prenatal and postnatal life in CC; prenatal group-prenatal in PC and postnatal life in CC; postnatal group-prenatal in CC and postnatal life in PC; and pre-post group-prenatal and postnatal life in PC. As an indicator of oxidative stress, levels of lipid peroxidation in hearts were measured by malondialdehyde (MDA) quantification and by quantification of the myocardial immunoreactivity for 15-F2t-isoprostane. Ultrastructural studies were performed to detect cellular alterations related to oxidative stress. Concentration of MDA was significantly increased in postnatal (2.45 +/- 0.84 nmol/mg) and pre-post groups (3.84 +/- 1.39 nmol/mg) compared to the control group (0.31 +/- 0.10 nmol/mg) (p < .01). MDA values in the pre-post group were significantly increased compared to the prenatal group (0.71 +/- 0.15 nmol/mg) (p = .017). Myocardial isoprostane area fraction in the pre-post group was increased compared to other groups (p <= .01). Results show that ambient levels of air pollution elicit cardiac oxidative stress in adult mice, and that gestational exposure may enhance this effect.
Resumo:
Background: There is scarce information on the potential benefits of immunosuppression in children with myocarditis and viral genomes in myocardium. We investigated the occurrence of myocarditis in children with a preliminary diagnosis of dilated cardiomyopathy, the frequency of cardiotropic viruses in the myocardium, and the response to immunosuppression. Methods: Thirty patients (nine months to 12 years) with left ventricular ejection fraction of 22.8 +/- 4.1% were subjected to right cardiac catheterization and endomyocardial biopsy. Specimens were analyzed for the presence of inflammatory elements (Dallas criteria) and viral genome (polymerase chain reaction). Patients with active myocarditis received immunosuppressants (azatioprine and prednisone) and were recatheterized nine months later. A historical control group of nine patients with myocarditis who did not receive immunosuppressants was included. Results: Active myocarditis was diagnosed in ten patients (five with viral genomes detected). Immunosuppression resulted in a significant increase in left ventricular ejection fraction from 25.2 +/- 2.8% to 45.7 +/- 8.6% (versus 20.0 +/- 4.0% to 22.0 +/- 9.0% in historical controls, p < 0.01) and cardiac index from 3.28 +/- 0.51 L/min/m(2) to 4.40 +/- 0.49 L/min/m(2) (versus 3.50 +/- 0.40 L/min/m(2) to 3.70 +/- 0.50 L/min/m(2) in controls, p < 0.01), regardless of the presence of viral genomes (p - 0.98 and p - 0.22, respectively for the two variables). No relevant clinical events were observed. Non-inflammatory cardiomyopathy was diagnosed in 20 patients (seven with viral genomes). While on conventional therapy, there were four deaths and three assignments to transplantation, and no improvement of left ventricular ejection fraction in the remaining ones (22.5 +/- 3.6% to 27.5 +/- 10.6%). Conclusion: Children with chronic myocarditis seem to benefit from immunosuppressive therapy, regardless of the presence of viral genome in the myocardium. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Myocardial hypertrophy and dysfunction occur in response to excessive catecholaminergic drive. Adverse cardiac remodelling is associated with activation of proinflammatory cytokines in the myocardium. To test the hypothesis that exercise training can prevent myocardial dysfunction and production of proinflammatory cytokines induced by beta-adrenergic hyperactivity, male Wistar rats were assigned to one of the following four groups: sedentary non-treated (Con); sedentary isoprenaline treated (Iso); exercised non-treated (Ex); and exercised plus isoprenaline (Iso+Ex). Echocardiography, haemodynamic measurements and isolated papillary muscle were used for functional evaluations. Real-time RT-PCR and Western blot were used to quantify tumour necrosis factor alpha, interleukin-6, interleukin-10 and transforming growth factor beta(1) (TGF-beta(1)) in the tissue. NF-kappa B expression in the nucleus was evaluated by immunohistochemical staining. The Iso rats showed a concentric hypertrophy of the left ventricle (LV). These animals exhibited marked increases in LV end-diastolic pressure and impaired myocardial performance in vitro, with a reduction in the developed tension and maximal rate of tension increase and decrease, as well as worsened recruitment of the Frank-Starling mechanism. Both gene and protein levels of tumour necrosis factor alpha and interleukin-6, as well as TGF-beta(1) mRNA, were increased. In addition, the NF-kappa B expression in the Iso group was significantly raised. In the Iso+Ex group, the exercise training had the following effects: (1) it prevented LV hypertrophy; (ii) it improved myocardial contractility; (3) it avoided the increase of proinflammatory cytokines and improved interleukin-10 levels; and (4) it attenuated the increase of TGF-beta(1) mRNA. Thus, exercise training in a model of beta-adrenergic hyperactivity can avoid the adverse remodelling of the LV and inhibit inflammatory cytokines. Moreover, the cardioprotection is related to beneficial effects on myocardial performance.
Resumo:
OBJECTIVES We sought to assess the prognostic value and risk classification improvement using contemporary single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) to predict all-cause mortality. BACKGROUND Myocardial perfusion is a strong estimator of prognosis. Evidence published to date has not established the added prognostic value of SPECT-MPI nor defined an approach to detect improve classification of risk in women from a developing nation. METHODS A total of 2,225 women referred for SPECT-MPI were followed by a mean period of 3.7 +/- 1.4 years. SPECT-MPI results were classified as abnormal on the presence of any perfusion defect. Abnormal scans were further classified as with mild/moderate reversible, severe reversible, partial reversible, or fixed perfusion defects. Risk estimates for incident mortality were categorized as <1%/year, 1% to 2%/year, and >2%/year using Cox proportional hazard models. Risk-adjusted models incorporated clinical risk factors, left ventricular ejection fraction (LVEF), and perfusion variables. RESULTS All-cause death occurred in 139 patients. SPECT-MPI significantly risk stratified the population; patients with abnormal scans had significantly higher death rates compared with patients with normal scans, 13.1% versus 4.0%, respectively (p < 0.001). Cox analysis demonstrated that after adjusting for clinical risk factors and LVEF, SPECT-MPI improved the model discrimination (integrated discrimination index = 0.009; p = 0.02), added significant incremental prognostic information (global chi-square increased from 87.7 to 127.1; p < 0.0001), and improved risk prediction (net reclassification improvement = 0.12; p = 0.005). CONCLUSIONS SPECT-MPI added significant incremental prognostic information to clinical and left ventricular functional variables while enhancing the ability to classify this Brazilian female population into low-and high-risk categories of all-cause mortality. (J Am Coll Cardiol Img 2011;4:880-8) (C) 2011 by the American College of Cardiology Foundation
Resumo:
Aims We conducted a meta-analysis to evaluate the accuracy of quantitative stress myocardial contrast echocardiography (MCE) in coronary artery disease (CAD). Methods and results Database search was performed through January 2008. We included studies evaluating accuracy of quantitative stress MCE for detection of CAD compared with coronary angiography or single-photon emission computed tomography (SPECT) and measuring reserve parameters of A, beta, and A beta. Data from studies were verified and supplemented by the authors of each study. Using random effects meta-analysis, we estimated weighted mean difference (WMD), likelihood ratios (LRs), diagnostic odds ratios (DORs), and summary area under curve (AUC), all with 95% confidence interval (0). Of 1443 studies, 13 including 627 patients (age range, 38-75 years) and comparing MCE with angiography (n = 10), SPECT (n = 1), or both (n = 2) were eligible. WMD (95% CI) were significantly less in CAD group than no-CAD group: 0.12 (0.06-0.18) (P < 0.001), 1.38 (1.28-1.52) (P < 0.001), and 1.47 (1.18-1.76) (P < 0.001) for A, beta, and A beta reserves, respectively. Pooled LRs for positive test were 1.33 (1.13-1.57), 3.76 (2.43-5.80), and 3.64 (2.87-4.78) and LRs for negative test were 0.68 (0.55-0.83), 0.30 (0.24-0.38), and 0.27 (0.22-0.34) for A, beta, and A beta reserves, respectively. Pooled DORs were 2.09 (1.42-3.07), 15.11 (7.90-28.91), and 14.73 (9.61-22.57) and AUCs were 0.637 (0.594-0.677), 0.851 (0.828-0.872), and 0.859 (0.842-0.750) for A, beta, and A beta reserves, respectively. Conclusion Evidence supports the use of quantitative MCE as a non-invasive test for detection of CAD. Standardizing MCE quantification analysis and adherence to reporting standards for diagnostic tests could enhance the quality of evidence in this field.
Resumo:
Background: Sustained beta-adrenoreceptor activation promotes cardiac hypertrophy and cellular injury. Aims: To evaluate the cardioprotective effect of exercise on damage induced by beta-adrenergic hyperactivity. Methods: Male Wistar rats were randomised into four groups (n=8 per group): sedentary non-treated control (C), sedentary treated with isoproterenol 0.3 mg/kg/day administered subcutaneously for 8 days (1), exercised non-treated (E) and exercised plus isoproterenol administered during the last eight days of exercise (IE). Exercised animals ran on a treadmill for 1 h daily 6 times a week for 13 weeks. Results: Isoproterenol caused increases in left ventricle (LV) wet and dry weight/body weight ratio, LV water content and cardiomyocyte transverse diameter. Additionally, isoproterenol induced severe cellular lesions, necrosis, and apoptosis, increased collagen content and reduced capillary and fibre fractional areas. Notably, all of these abnormalities were completely prevented by exercise. Conclusion: Our data have demonstrated that complete cardioprotection is possible through exercise training; by preventing p-adrenergic hyperactivity-induced cardiac hypertrophy and structural injury. (c) 2008 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
Chagas disease, characterized by acute myocarditis and chronic cardiomyopathy, is caused by infection with the protozoan parasite Trypanosoma cruzi. We sought to identify genes altered during the development of parasite-induced cardiomyopathy. Microarrays containing 27,400 sequence-verified mouse cDNAs were used to analyze global gene expression changes in the myocardium of a murine model of chagasic cardiomyopathy. Changes in gene expression were determined as the acute stage of infection developed into the chronic stage. This analysis was performed on the hearts of male CD-1 mice infected with trypomastigotes of T. cruzi (Brazil strain). At each interval we compared infected and uninfected mice and confirmed the microarray data with dye reversal. We identified eight distinct categories of mRNAs that were differentially regulated during infection and identified dysregulation of several key genes. These data may provide insight into the pathogenesis of chagasic cardiomyopathy and provide new targets for intervention. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVES This study aimed at analyzing the association between myocardial perfusion changes and the progression of left ventricular systolic dysfunction in patients with chronic Chagas` cardiomyopathy (CCC). BACKGROUND Pathological and experimental studies have suggested that coronary microvascular derangement, and consequent myocardial perfusion disturbance, may cause myocardial damage in CCC. METHODS Patients with CCC (n = 36, ages 57 +/- 10 years, 17 males), previously having undergone myocardial perfusion single-positron emission computed tomography and 2-dimensional echocardiography, prospectively underwent a new evaluation after an interval of 5.6 +/- 1.5 years. Stress and rest myocardial perfusion defects were quantified using polar maps and normal database comparison. RESULTS Between the first and final evaluations, a significant reduction of left ventricular ejection fraction was observed (55 +/- 11% and 50 +/- 13%, respectively; p = 0.0001), as well as an increase in the area of the perfusion defect at rest (18.8 +/- 14.1% and 26.5 +/- 19.1%, respectively; p = 0.0075). The individual increase in the perfusion defect area at rest was significantly correlated with the reduction in left ventricular ejection fraction (R = 0.4211, p = 0.0105). Twenty patients with normal coronary arteries (56%) showed reversible perfusion defects involving 10.2 +/- 9.7% of the left ventricle. A significant topographic correlation was found between reversible defects and the appearance of new rest perfusion defects at the final evaluation. Of the 47 segments presenting reversible perfusion defects in the initial study, 32 (68%) progressed to perfusion defects at rest, and of the 469 segments not showing reversibility in the initial study, only 41 (8.7%) had the same progression (p < 0.0001, Fisher exact test). CONCLUSIONS In CCC patients, the progression of left ventricular systolic dysfunction was associated with both the presence of reversible perfusion defects and the increase in perfusion defects at rest. These results support the notion that myocardial perfusion disturbances participate in the pathogenesis of myocardial injury in CCC. (J Am Coll Cardiol Img 2009;2:164-72) (c) 2009 by the American College of Cardiology Foundation
Resumo:
Cardiac sympathetic denervation and ventricular arrhythmia are frequently observed in chronic Chagas cardiomyopathy (CCC). This study quantitatively evaluated the association between cardiac sympathetic denervation and sustained ventricular tachycardia (SVT) in patients with CCC. Methods: We prospectively investigated patients with CCC and left ventricular ejection fraction (LVEF) greater than 35% with SVT (SVT group: n = 5 15; mean age +/- SD, 61 +/- 8 y; LVEF, 51% +/- 8%) and patients without SVT (non-SVT group: n = 11; mean age +/- SD, 55 +/- 10 y; LVEF, 57% +/- 10%). Patients underwent myocardial scintigraphy with (123)I-metaiodobenzylguanidine ((123)I-MIBG) for the evaluation of sympathetic innervation and resting perfusion with (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) for the evaluation of myocardial viability. A visual semiquantitative score was attributed for regional uptake of each radiotracer using a 17-segment left ventricular segmentation model (0, normal; 4, absence of uptake). A mismatch defect was defined as occurring in segments with a 99mTc-MIBI uptake score of 0 or 1 and a (123)I-MIBG score of 2 or more. Results: Compared with the non-SVT group, the SVT group had a similar (99m)Tc-MIBI summed score (6.9 +/- 7.5 vs. 4.4 +/- 5.2, respectively, P = 0.69) but a higher (123)I-MIBG summed score (10.9 +/- 7.8 vs. 22.4 +/- 9.5, respectively, P = 0.007) and a higher number of mismatch defects per patient (2.0 +/- 2.2 vs. 7.1 +/- 2.0, respectively, P < 0.0001). The presence of more than 3 mismatch defects was strongly associated with the presence of SVT (93% sensitivity, 82% specificity; P = 0.0002). Conclusion: In CCC, the amount of sympathetically denervated viable myocardium is associated with the occurrence of SVT. Myocardial sympathetic denervation may participate in triggering malignant ventricular arrhythmia in CCC patients with relatively well-preserved ventricular function.
Resumo:
The objective of this report is to document the effects of an aerobic training program on myocardial perfusion, and endothelial function abnormalities, and on the relief of angina in a patient with microvascular myocardial ischemia. A 53-year-old female patient exhibited precordial pain on effort and angiographically normal coronaries. Her symptoms had been present for 4 yrs despite pharmacologic treatment for the control of risk factors, with myocardial perfusion scintigraphy revealing an extensive reversible perfusion defect. She was submitted to aerobic training for 4 mos, obtaining significant improvement of the anginal symptoms. Additionally, after the aerobic training program, scintigraphy revealed the disappearance of the myocardial perfusion defect, with a marked improvement of endothelium-dependent vasodilatory response and an improved quality-of-life score. These results suggest that aerobic training can improve endothelial function, leading to a reduction of ischemia and an improved quality-of-life in patients with microvascular myocardial ischemia.
Resumo:
This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO(-/-) mice exhibited reduced inflammation, collagen deposition, and migration of CD4(+), CD8(+), and IFN-gamma-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-alpha, IFN-gamma, and nitric oxide synthase were found in the hearts of 5-LO(-/-) mice. Interestingly, despite of early higher parasitic load, 5-LO(-/-) mice survived, and controlled T cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO(-/-) mice, in which reduced myocarditis protects the animals during T cruzi infection. (c) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Evidence from our laboratory has shown alterations in myocardial structure in severe sepsis/septic shock. The morphological alterations are heralded by sarcolemmal damage, characterized by increased plasma membrane permeability caused by oxidative damage to lipids and proteins. The critical importance of the dystrophin-glycoprotein complex (DGC) in maintaining sarcolemmal stability led us to hypothesize that loss of dystrophin and associated glycoproteins could be involved in early increased sarcolemmal permeability in experimentally induced septic cardiomyopathy. Male C57Bl/6 mice were subjected to sham operation and moderate (MSI) or severe (SSI) septic injury induced by cecal ligation and puncture (CLP). Using western blot and immunofluorescence, a downregulation of dystrophin and beta-dystroglycan expression in both severe and moderate injury could be observed in septic hearts. The immunofluorescent and protein amount expressions of laminin-alpha 2 were similar in SSI and sham-operated hearts. Consonantly, the evaluation of plasma membrane permeability by intracellular albumin staining provided evidence of severe injury of the sarcolemma in SSI hearts, whereas antioxidant treatment significantly attenuated the loss of sarcolemmal dystrophin expression and the increased membrane permeability. This study offers novel and mechanistic data to clarify subcellular events in the pathogenesis of cardiac dysfunction in severe sepsis. The main finding was that severe sepsis leads to a marked reduction in membrane localization of dystrophin and beta-dystroglycan in septic cardiomyocytes, a process that may constitute a structural basis of sepsis-induced cardiac depression. In addition, increased sarcolemmal permeability suggests functional impairment of the DGC complex in cardiac myofibers. In vivo observation that antioxidant treatment significantly abrogated the loss of dystrophin expression and plasma membrane increased permeability supports the hypothesis that oxidative damage may mediate the loss of dystrophin and beta-dystroglycan in septic mice. These abnormal parameters emerge as therapeutic targets and their modulation may provide beneficial effects on future cardiovascular outcomes and mortality in sepsis. Laboratory Investigation (2010) 90, 531-542; doi: 10.1038/labinvest.2010.3; published online 8 February 2010
Resumo:
Objectives: The aim of this prospective study was to compare the efficacy of intermittent antegrade blood cardioplegia with or without n-acetylcysteine (NAC) in reducing myocardial oxidative stress and coronary endothelial activation. Methods: Twenty patients undergoing elective isolated coronary artery bypass graft surgery were randomly assigned to receive intermittent antegrade blood cardioplegia (32 degrees C-34 degrees C) with (NAC group) or without (control group) 300 mg of NAC. For these 2 groups we compared clinical outcome, hemodynamic evolution, systemic plasmatic levels of troponin I, and plasma concentrations of malondialdehyde (MDA) and soluble vascular adhesion molecule 1 (sVCAM-1) from coronary sinus blood samples. Results: Patient demographic characteristics and operative and postoperative data findings in both groups were similar. There was no hospital mortality. Comparing the plasma levels of MDA 10 min after the aortic cross-clamping and of sVCAM-1 30 min after the aortic cross-clamping period with the levels obtained before the aortic clamping period, we observed increases of both markers, but the increase was significant only in the control group (P=.039 and P=.064 for MDA; P=.004 and P=.064 for sVCAM- 1). In both groups there was a significant increase of the systemic serum levels of troponin I compared with the levels observed before cardiopulmonary bypass (P<.001), but the differences between the groups were not significant (P=.570). Conclusions: Our investigation showed that NAC as an additive to blood cardioplegia in patients undergoing on-pump coronary artery bypass graft surgery may reduce oxidative stress and the resultant coronary endothelial activation.
Resumo:
The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta 1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.