36 resultados para Morphological zones
Resumo:
New U-Pb (SHRIMP) and (40)Ar/(39)Ar isotopic data of igneous rocks and mylonites of the Borborema Province (NE Brazil) show that a wide range of tectonothermal events affected the province during the transition from the Precambrian to the Cambrian. Concordant zircon U-Pb data constrained the crystallization age of mafic stocks, mafic to felsic dikes and granite batholiths between 548 and 533 Ma. These bodies were emplaced in a regional strain field combining extension and dextral shearing. The ductile shear deformation overprinted an older basement fabric to develop a low- to medium metamorphic grade vertical mylonite belt that cut the province in the E-W direction. Magnetic fabrics of the Cambrian batholiths determined by anisotropy of magnetic susceptibility are consistent with syntectonic emplacement. The magmatic pulses and shear deformation would have supplied enough heat to reset the synkinematic micas of mylonites to yield (40)Ar/(39)Ar plateau cooling ages between ca. 550 and 510 Ma. These results provide evidence that emplacement of Early Cambrian mafic and felsic magmas were accompanied by regional-scale shear deformations, probably in the consequence of late collisions along the West Gondwana margin. (C) 2010 Published by Elsevier B.V.
Resumo:
We used the fabrics of two granite plutons and U/Pb (SHRIMP) zircon ages to constrain the tectonic evolution of the E-trending Patos shear zone (Borborema Province, NE Brazil). The pre-tectonic Teixeira batholith consists of an amphibole leucogranite locally with aegirine-augite. Zircons from a syenogranite yielded crystallization ages of 591 +/- 5 Ma. The batholith fabrics were determined by anisotropy of magnetic susceptibility (AMS) and mineral shape preferred orientation. The fabrics support pre-transcurrent batholith emplacement, as evidenced by: (i) magmatic/magnetic fabrics in low susceptibility (<0.35 mSI) leucogranites highly discordant to the regional host rock structure, and (ii) concordant magnetic fabrics restricted to high susceptibility (>1 mSI) corridors connected to shear zones branching off from Patos. One of these satellite shear zones controlled the syntectonic emplacement of the Serra Redonda pluton, which yields a crystallization age of 576 +/- 3 Ma. This late shearing event marks the peak regional deformation that, south of Patos, was coupled to crustal shortening nearly perpendicular to the shear belt. The chronology of the deformational events indicates that the major shear zones of the eastern Borborema are late structures active after the crustal blocks amalgamated. (C) 2007 Elsevier Ltd. All rights reserved.
Morphology and composition of gold in a lateritic profile, Fazenda Pison ""Garimpo"", Amazon, Brazil
Resumo:
This study describes the morphological evolution of gold grains in a lateritic weathering profile in an equatorial rainforest climate. Primary sources of gold are quartz veins associated with shallow granophyric intrusion. Gold grains were found in fresh ore, saprolite, transition zones, ferruginous duricrust, red latosol, and yellow latosol. Irregularly shaped grains predominate, with smaller proportions of dendritic and prismatic forms. Gold grains are weathered in the uppermost 10 m of the regolith. Mean gold grain size is maximum in the duricrust (> 125 mu m) and decreases progressively upward into the yellow latosol (<90 mu m). Voids and corrosion pits appear on grain surfaces, and progressive rounding is observed from the bottom of the profile to the top. Gold grains can be classified as either homogeneous or zoned with respect to their chemical composition. Homogeneous grains contain 2-15% Ag (mean 8.3%). Zoned grains have more variable Ag contents; grain cores have means of approximately 10% or 23% Ag, with Ag-poor zones of approximately 3.7% Ag along internal discontinuities and/or outer rims. Formation of Ag-poor rims is due to preferential depletion of silver. Processes responsible for duricrust formation may preserve some grains as large aggregates, but subsequent transformation into latosol further modifies them. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.
Resumo:
The aim of the present work was to investigate the toughening of phenolic thermoset and its composites reinforced with sisal fibers, using hydroxyl-terminated polybutadiene rubber (HTPB) as both impact modifier and coupling agent. Substantial increase in the impact strength of the thermoset was achieved by the addition 10% of HTPB. Scanning electron microscopy (SEM) images of the material with 15% HTPB content revealed the formation of some rubber aggregates that reduced the efficiency of the toughening mechanism. In composites, the toughening effect was observed only when 2.5% of HTPB was added. The rubber aggregates were found located mainly at the matrix-fiber interface suggesting that HTPB could be used as coupling agent between the sisal fibers and the phenolic matrix. A composite reinforced with sisal fibers pre-impregnated with HTPB was then prepared; its SEM images showed the formation of a thin coating of HTPB on the surface of the fibers. The ability of HTBP as coupling agent between sisal fibers and phenolic matrix was then investigated by preparing a composite reinforced with sisal fibers pre-treated with HTPB. As revealed by its SEM images, the HTPB pre-treatment of the fibers resulted on the formation of a thin coating of HTPB on the surface of the fibers, which provided better compatibility between the fibers and the matrix at their interface, resulting in a material with low water absorption capacity and no loss of impact strength. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex(R), PP or Ecoflex(R)/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young`s modulus than Ecoflex(R), and the latter had little influence on the properties of PP in Ecoflex(R)/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures. (C) 2009 Elsevier Ltd. All rights reserved.