90 resultados para Model of Goal-Directed Behavior
Resumo:
This article reports major results from collaborative research between France and Brazil on soil and water systems, carried out in the Upper Amazon Basin. It reveals the weathering processes acting in the partly inundated, low elevation plateaus of the Basin, mostly covered by evergreen forest. Our findings are based on geochemical data and mineral spectroscopy that probe the crystal chemistry of Fe and Al in mineral phases (mainly kaolinite, Al- and Fe-(hydr)oxides) of tropical soils (laterites). These techniques reveal crystal alterations in mineral populations of different ages and changes of metal speciation associated with mineral or organic phases. These results provide an integrated model of soil formation and changes (from laterites to podzols) in distinct hydrological compartments of the Amazon landscapes and under altered water regimes. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Objective: Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. Hematopoietic tissue requires a high nutrient supply, and a reduction in leukocytes, especially lymphocytes, suggests that some nutritional deficiencies might be altering bone marrow function and decreasing its ability to produce lymphocytes. In this study, we evaluated the effect that PEM has on lymphocyte subtypes and the cell cycle of CD5(+) cells. Methods: Swiss mice were subjected to PEM using a low-protein diet containing 4% protein. When the experimental group had lost about 20% of their original body weight, we collected blood and bone marrow cells and evaluated the hemogram, the myelogram, bone marrow lymphoid markers using flow cytometry, and the cell cycle in CD5(+) bone marrow. Results: Malnourished animals presented anemia, reticulocytopenia, and leukopenia with lymphopenia. The bone marrow was hypocellular, and flow cytometric analyses of bone marrow cells showed cells that were CD45(+) (91.2%), CD2(+) (84.9%), CD5(+) (37.3%), CD3(+) (23.5%), CD19(+) (43.3%), CD22(+) (34.7%), CD19(+)/CD2(+) (51.2%), CD19(+)/CD3(+)(24.0%), CD19(+)/CD5(+) (13.2%), CD22(+)/CD2(+) (40.1%), CD22(+)/CD3(+) (30.3%), and CD22(+)/CD5(+) (1.1%) in malnourished animals and CD45(+) (97.5%), CD2(+) (42.9%), CD5(+) (91.5%), CD3(+) (92.0%), CD19(+) (52.0%), CD22(+) (75.6%), CD19(+)/CD2(+) (62.0%), CD19(+)/CD3(+) (55.4%), CD19(+)/CO5(+) (6.7%), CD22(+)/CD2(+) (70.3%), CD22(+)/CD3(+) (55.9%), and CD22(+)/ CD5(+) (8.4%) in control animals. Malnourished animals also presented more CD5(+) cells in the G0 phase of cell cycle development. Conclusion: Malnourished animals presented bone marrow hypoplasia, maturation interruption, prominent lymphopenia with depletion in the lymphoid lineage, and changes in cellular development. We suggest that these changes are some of the primary causes of lymphopenia in cases of PEM and partly explain the increase in susceptibility to infections found in malnourished individuals. Published by Elsevier Inc.
Resumo:
The aim of this study was to verify the capacity of the extracellular matrix (ECM) obtained from bone marrow of malnourished mice to sustain survival and to induce the proliferation of myeloid cells. We also verified the capacity of the tests to interact with in vitro hematopoietic cytokines. Male ""Swiss"" mice were submitted to protein malnutrition with a diet contents of 4% casein until they lost 20% of the original weight, while the group-control was kept with a diet content of 14% of casein. The bone marrow was extracted with 1.0 mg of aprotinin/mL in PBS. The proliferation tests were carried out with myeloid cell line FDCP-1, by the colorimetric method of reduction of the MTT. The obtained ECM from nourished and undernourished mice induced cellular proliferation in vitro. Tests performed with Il-3 and GM-CSF cytokines in a concentration of 10 and 500 rho g/mL displayed synergic and regulatory effects respectively. The ECM obtained from the malnourished group submitted to the binding to GM-CSF demonstrated higher cellular proliferation than the ECM obtained from the control group (p<0.05). The results suggest that the alterations in the composition of ECM of bone marrow caused by malnutrition might lead to modification of the GM-CSF activity modulation.
Resumo:
We have shown that the ethanolic extract of Lafoensia pacari inhibits eosinophilic inflammation induced by Toxocara canis infection, and that ellagic acid is the secondary metabolite responsible for the anti-eosinophilic activity seen in a model of beta-glucan peritonitis. In the present study, we investigated the preventive and curative effects of L. pacari extract and ellagic acid on allergic lung inflammation using a murine model of ovalbumin-induced asthma. In bronchoalveolar lavage fluid, preventive (22-day) treatment with L. pacari (200 mg/kg) and ellagic acid (10 mg/kg) inhibited neutrophil counts (by 75% and 57%) and eosinophil counts (by 78% and 68%). L. pacari reduced IL-4 and IL-13 levels (by 67% and 73%), whereas ellagic acid reduced IL-4, IL-5 and IL-13 (by 67%, 88% and 85%). To investigate curative anti-inflammatory effects, we treated mice daily with ellagic acid (0.1, 1, or 10 mg/kg), also treating selected mice with L. pacari (200 mg/kg) from day 18 to day 22. The highest ellagic acid dose reduced neutrophil and eosinophil numbers (by 59% and 82%), inhibited IL-4, IL-5, and IL-13 (by 62%,61%, and 49%). Neither L. pacari nor ellagic acid suppressed ovalbumin-induced airway hyperresponsiveness or cysteinyl leukotriene synthesis in lung homogenates. In mice treated with ellagic acid (10 mg/kg) or L. pacari (200 mg/kg) at 10 min after the second ovalbumin challenge, eosinophil numbers were 53% and 69% lower, respectively. Cytokine levels were unaffected by this treatment. L. pacari and ellagic acid are effective eosinophilic inflammation suppressors, suggesting a potential for treating allergies. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Background/Aims: It is a challenge to adapt traditional in vitro diffusion experiments to ocular tissue. Thus, the aim of this work was to present experimental evidence on the integrity of the porcine cornea, barrier function and maintenance of electrical properties for 6 h of experiment when the tissue is mounted on an inexpensive and easy-to-use in vitro model for ocular iontophoresis. Methods: A modified Franz diffusion cell containing two ports for the insertion of the electrodes and a receiving compartment that does not need gassing with carbogen was used in the studies. Corneal electron transmission microscopy images were obtained, and diffusion experiments with fluorescent markers were performed to examine the integrity of the barrier function. The preservation of the negatively charged corneal epithelium was verified by the determination of the electro-osmotic flow of a hydrophilic and non-ionized molecule. Results: The diffusion cell was able to maintain the temperature, homogenization, porcine epithelial corneal structure integrity, barrier function and electrical characteristics throughout the 6 h of permeation experiment, without requiring CO(2) gassing when the receiving chamber was filled with 25 m M of HEPES buffer solution. Conclusion: The system described here is inexpensive, easy to handle and reliable as an in vitro model for iontophoretic ocular delivery studies. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Mice show urinary scent marking behavior as a form of social communication. Marking to a conspecific stimulus mouse or odor varies with stimulus familiarity, indicating discrimination of novel and familiar animals. This study investigated Fos immunoreactivity in inbred C57BL/6J (C57) males following scent marking behavior in response to detection of a social stimulus, or discrimination between a familiar and an unfamiliar conspecific. In Experiment 1 C57 mice were exposed for four daily trials to an empty chamber; on a test day they were exposed to the same chamber or to a male CD-1 mouse in that chamber. Increased scent marking to the CD-1 mouse was associated with increased Fos-immunoreactive cells in the basolateral amygdala, medial amygdala, and dorsal and ventral premammillary nuclei. In Experiment 2 C57 mice were habituated to a CD-1 male for 4 consecutive days and, on the 5th day, exposed to the same CD-1 male, or to a novel CD-1 male. Mice exposed to a novel CD-1 displayed a significant increase in scent marking compared to their last exposure to the familiar stimulus, indicating discrimination of the novelty of this social stimulus. Marking to the novel stimulus was associated with enhanced activation of several telencephalic, as well as hypothalamic and midbrain, structures in which activation had not been seen in the detection paradigm (Experiment 1). These included medial prefrontal and piriform cortices, and lateral septum; the paraventricular nuclei, ventromedial nuclei, and lateral area of the hypothalamus, and the ventrolateral column of the periaqueductal gray. These data suggest that a circumscribed group of structures largely concerned with olfaction is involved in detection of a conspecific olfactory stimulus, whereas discrimination of a novel vs. a familiar conspecific stimulus engages a wider range of forebrain structures encompassing higher-order processes and potentially providing an interface between cognitions and emotions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Asthma is characterized by pulmonary cellular infiltration, vascular exudation and airway hyperresponsiveness. Several drugs that modify central nervous system (CNS) activity can modulate the course of asthma. Amphetamine (AMPH) is a highly abused drug that presents potent stimulating effects on the CNS and has been shown to induce behavioral, biochemical and immunological effects. The purpose of this study was to investigate the effects of AMPH on pulmonary cellular influx, vascular permeability and airway reactivity. AMPH effects on adhesion molecule expression, IL-10 and IL-4 release and mast cell degranulation were also studied. Male Wistar rats were sensitized with ovalbumin (OVA) plus alum via subcutaneous injection. One week later, the rats received another injection of OVA-alum (booster). Two weeks after this booster, the rats were subjected to AMPH treatment 12 h prior to the OVA airway challenge. In rats treated with AMPH, the OVA challenge reduced cell recruitment into the lung, the vascular permeability and the cellular expression of ICAM-1 and Mac-1. Additionally, elevated levels of IL-10 and IL-4 were found in samples of lung explants from allergic rats. AMPH treatment, in comparison, increased IL-10 levels but reduced those of IL-4 in the lung explants. Moreover, the tracheal responsiveness to methacholine (MCh), as well as to an in vitro OVA challenge, was reduced by AMPH treatment, and levels of PCA titers were not modified by the drug. Our findings suggest that single AMPH treatment down-regulates several parameters of lung inflammation, such as cellular migration, vascular permeability and tracheal responsiveness. These results also indicate that AMPH actions on allergic lung inflammation include endothelium-leukocyte interaction mechanisms, cytokine release and mast cell degranulation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Hepatocyte proliferation and apoptosis (programmed cell death) occur during the liver parenchyma regeneration and the liver size modeling is mainly controlled by hepatocyte apoptosis. The purpose of the present study was to verify the influence of immunosuppressant drugs on these phenomena by utilizing tissue microarray techniques. Thirty-six weaning rats (age 21-23 days, weight 30-50 g) were divided into six groups: control, sham, hepatectomy, hepatectomy plus solumedrol, hepatectomy plus CsA, and hepatectomy plus Tac. The animals were killed one day after hepatectomy, and the remnant livers were weighed and harvested for tissue microarray sections. Liver cell proliferation was evaluated by staining for PCNA and apoptosis was detected by the TUNEL method. It was verified that CsA promoted a decrease in the liver weight, Tac and CsA decreased the proliferation index of hepatocytes, and glucocorticoid had no significant effects. The apoptosis index was not altered by hepatectomy or immunosuppressants. Our data indicate that, in the growing rat, CsA and Tac have negative effects on hepatocyte proliferation and have no effect on the hepatocyte apoptosis.
Resumo:
Background. The main purpose of the present investigation was to describe a model of intestinal denervation and in situ intestinal ischemia-reperfusion injury in adult rats, with utilization of the distal branch of the superior mesenteric artery close to the cecum for perfusion. Methods. In the root of the mesentery, the mesenteric artery and vein were completely isolated. Close to the cecal valve, a lymphatic node served as the reference point for the localization of the cecal artery, which was cannulated for perfusion with cold lactated Ringer`s solution. One hundred adult male rats were utilized in the study. Results. In a pilot study, we demonstrated that the cold ischemia time was sufficient to promote histopathologic intestinal changes characteristic of ischemia-reperfusion injury. Among 88 operated animals, 62 (70.5%) survived the procedure. Conclusion. The experimental model described herein has the advantage of preserving the entire intestine, which makes it more suitable for studies of physiological and morphological alterations after intestinal transplantation.
Resumo:
Suppression of the renin-angiotensin system during lactation causes irreversible renal structural changes. In this study we investigated 1) the time course and the mechanisms underlying the chronic kidney disease caused by administration of the AT(1) receptor blocker losartan during lactation, and 2) whether this untoward effect can be used to engender a new model of chronic kidney disease. Male Munich-Wistar pups were divided into two groups: C, whose mothers were untreated, and L(Lact), whose mothers received oral losartan (250 mg.kg(-1).day(-1)) during the first 20 days after delivery. At 3 mo of life, both nephron number and the glomerular filtration rate were reduced in L(Lact) rats, whereas glomerular pressure was elevated. Unselective proteinuria and decreased expression of the zonula occludens-1 protein were also observed, along with modest glomerulosclerosis, significant interstitial expansion and inflammation, and wide glomerular volume variation, with a stable subpopulation of exceedingly small glomeruli. In addition, the urine osmolality was persistently lower in L(Lact) rats. At 10 mo of age, L(Lact) rats exhibited systemic hypertension, heavy albuminuria, substantial glomerulosclerosis, severe renal interstitial expansion and inflammation, and creatinine retention. Conclusions are that 1) oral losartan during lactation can be used as a simple and easily reproducible model of chronic kidney disease in adult life, associated with low mortality and no arterial hypertension until advanced stages; and 2) the mechanisms involved in the progression of renal injury in this model include glomerular hypertension, glomerular hypertrophy, podocyte injury, and interstitial inflammation.
Resumo:
Background: Different hemodynamic parameters including static indicators of cardiac preload as right ventricular end-diastolic volume index (RVEDVI) and dynamic parameters as pulse pressure variation (PPV) have been used in the decision-making process regarding volume expansion in critically ill patients. The objective of this study was to compare fluid resuscitation guided by either PPV or RVEDVI after experimentally induced hemorrhagic shock. Methods: Twenty-six anesthetized and mechanically ventilated pigs were allocated into control (group I), PPV (group II), or RVEDVI (group III) group. Hemorrhagic shock was induced by blood withdrawal to target mean arterial pressure of 40 mm Hg, maintained for 60 minutes. Parameters were measured at baseline, time of shock, 60 minutes after shock, immediately after resuscitation with hydroxyethyl starch 6% (130/0.4), 1 hour and 2 hours thereafter. The endpoint of fluid resuscitation was determined as the baseline values of PPV and RVEDVI. Statistical analysis of data was based on analysis of variance for repeated measures followed by the Bonferroni test (p < 0.05). Results: Volume and time to resuscitation were higher in group III than in group II (group III = 1,305 +/- 331 mL and group II = 965 +/- 245 mL, p < 0.05; and group III = 24.8 +/- 4.7 minutes and group II = 8.8 +/- 1.3 minutes, p < 0.05, respectively). All static and dynamic parameters and biomarkers of tissue oxygenation were affected by hemorrhagic shock and nearly all parameters were restored after resuscitation in both groups. Conclusion: In the proposed model of hemorrhagic shock, resuscitation to the established endpoints was achieved within a smaller amount of time and with less volume when guided by PPV than when guided by pulmonary artery catheter-derived RVEDVI.
Resumo:
IRI is closely related to sepsis in ITx setting. Complete understanding of the mechanisms involved in IRI development may improve outcomes. Ortothopic ITx without immunosuppression was performed in order to characterize IRI-associated mucosal damage. Twenty pigs underwent ITx. Two groups were assigned to different CI times: G1: 90 min and, G2: 180 min. Euro-Collins was used as preservation solution. Jejunal fragments were collected at donor laparotomy, 30 min, and 3 days after reperfusion. IRI assessment involved: histopathologic analysis, quantification of MPO-positive cells through immunohistochemical studies, quantification of epithelial apoptotic cells using TUNEL staining, and quantification of IL-6, ET-1, Bak, and Bcl-XL genes expression by RT-PCR. Neutrophilic infiltration increased in a similar fashion in both groups, but lasted longer in G2. Apoptosis detected by TUNEL staining increased and anti-apoptotic gene Bcl-XL expression decreased significantly in G1, 3 days after surgery. Endothelin-1 and IL-6 genes expression increased 30 min after the procedure and returned to baseline 3 days after surgery. In conclusion, IL-6 and ET-1 are involved precociously in the development of intestinal IRI. Apoptosis was more frequently detected in G1 grafts by TUNEL-staining and by RT-PCR.
Resumo:
Background: Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over optimal fluid management for these patients. This study aimed to investigate the effects of acute hemodilution with hydroxyethyl starch (HES) or lactated Ringer`s solution (LR) in intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in dogs submitted to a cryogenic brain injury model. Methods: Design-Prospective laboratory animal study. Setting-Research laboratory in a teaching hospital. Subjects-Thirty-five male mongrel dogs. Interventions-Animals were enrolled to five groups: control, hemodilution with LR or HES 6% to an hematocrit target of 27% or 35%. Results: ICP and CPP levels were measured after cryogenic brain injury. Hemodilution promotes an increment of ICP levels, which decreases CPP when hematocrit target was estimated in 27.% after hemodilution. However, no differences were observed regarding crystalloid or colloid solution used for hemodilution in ICP and CPP levels. Conclusions: Hemodilution to a low hematocrit level increases ICP and decreases CPP scores in dogs submitted to a cryogenic brain injury. These results suggest that excessive hemodilution to a hematocrit below 30% should be avoided in traumatic brain injury patients.
Resumo:
For the purpose of developing a longitudinal model to predict hand-and-foot syndrome (HFS) dynamics in patients receiving capecitabine, data from two large phase III studies were used. Of 595 patients in the capecitabine arms, 400 patients were randomly selected to build the model, and the other 195 were assigned for model validation. A score for risk of developing HFS was modeled using the proportional odds model, a sigmoidal maximum effect model driven by capecitabine accumulation as estimated through a kinetic-pharmacodynamic model and a Markov process. The lower the calculated creatinine clearance value at inclusion, the higher was the risk of HFS. Model validation was performed by visual and statistical predictive checks. The predictive dynamic model of HFS in patients receiving capecitabine allows the prediction of toxicity risk based on cumulative capecitabine dose and previous HFS grade. This dose-toxicity model will be useful in developing Bayesian individual treatment adaptations and may be of use in the clinic.
Resumo:
Vitamin D (VD), is a steroid hormone with multiple functions in the central nervous system (CNS), producing numerous physiological effects mediated by its receptor (VDR). Clinical and experimental studies have shown a link between VD dysfunction and epilepsy. Along these lines, the purpose of our work was to analyze the relative expression of VDR mRNA in the hippocampal formation of rats during the three periods of pilocarpine-induced epilepsy. Male Wistar rats were divided into five groups: (1) control group; rats that received saline 0.9%, i.p. and were killed 7 days after its administration (CTRL, n = 8), (2) SE group; rats that received pilocarpine and were killed 4 h after SE (SE, n = 8), (3) Silent group-7 days; rats that received pilocarpine and were killed 7 days after SE (SIL 7d, n = 8), (4) Silent group-14 days; rats that received pilocarpine and were killed 14 days after SE (SIL 14d, n = 8), (5) Chronic group; rats that received pilocarpine and were killed 60 days after the first spontaneous seizure, (chronic, n = 8). The relative expression of VDR mRNA was determined by real-time PCR. Our results showed an increase of the relative expression of VDR mRNA in the SIL 7 days, SIL 14 days and Chronic groups, respectively (0.060 +/- 0.024; 0.052 +/- 0.035; 0.085 +/- 0.055) when compared with the CTRL and SE groups (0.019 +/- 0.017; 0.019 +/- 0.025). These data suggest the VDR as a possible candidate participating in the epileptogenesis process of the pilocarpine model of epilepsy. (C) 2008 Elsevier Inc. All rights reserved.