112 resultados para MYOSTATIN BLOCKADE
Resumo:
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Animal models of diseases are extremely important in the study of the physiopathogenesis of human diseases and for testing novel therapeutic interventions. The present study aimed to develop an animal model that simulates human allergic conjunctivitis and to study how allergic response may be influenced by the allergen dose used for immunization and by genetic factors. Methods: Sixty C57Bl/6 mice and 60 BALB/c mice were immunized with placebo, or 5 mu g or 500 mu g of allergen derived from Dermatophagoides pteronyssinus. After ocular challenge, the mice were examined in order to clinically verify the occurrence or not of conjunctivitis. Material obtained from animals was used for total and specific IgE and IgG1 dosage, for assays of Der p-specific lymphocyte proliferation and supernatant cytokine dosage, and for histopathological evaluation of conjunctiva. Results: We developed a murine model of allergic conjunctivitis induced by D. pteronyssinus. The model is similar to human disease both clinically and according to laboratory findings. In mouse, conjunctivitis was associated with a Th2 cytokine profile. However, IL-10 appeared to be involved with disease blockade. Mice of different strains have distinct immune responses, depending on the sensitization dose. Conclusions: The murine model developed is suitable for the study of immunopathogenesis and as a template for future therapies. Using BALB/c and C57BL/6 mice, we demonstrated that genetic factors play a role in determining susceptibility and resistance, as well as in establishing the allergen concentration needed to induce or to block disease development.
Resumo:
The goal of this study was to investigate how the Arg386Pro mutation prolongs KiSS-1 receptor (KISS1R) responsiveness to kisspeptin, contributing to human central precocious puberty. Confocal imaging showed colocalization of wild-type (WT) KISS1R with a membrane marker, which persisted for up to 5 h of stimulation. Conversely, no colocalization with a lysosome marker was detected. Also, overnight treatment with a lysosome inhibitor did not affect WT KISS1R protein, whereas overnight treatment with a proteasome inhibitor increased protein levels by 24-fold. WT and Arg386Pro KISS1R showed time-dependent internalization upon stimulation. However, both receptors were recycled back to the membrane. The Arg386Pro mutation did not affect the relative distribution of KISS1R in membrane and internalized fractions when compared to WT KISS1R for up to 120 min of stimulation, demonstrating that this mutation does not affect KISS1R trafficking rate. Nonetheless, total Arg386Pro KISS1R was substantially increased compared with WT after 120 min of kisspeptin stimulation. This net increase was eliminated by blockade of detection of recycled receptors, demonstrating that recycled receptors account for the increased responsiveness of this mutant to kisspeptin. We therefore conclude the following: 1) WT KISS1R is degraded by proteasomes rather than lysosomes; 2) WT and Arg386Pro KISS1R are internalized upon stimulation, but most of the internalized receptors are recycled back to the membrane rather than degraded; 3) the Arg386Pro mutation does not affect the rate of KISS1R trafficking-instead, it prolongs responsiveness to kisspeptin by decreasing KISS1R degradation, resulting in the net increase on mutant receptor recycled back to the plasma membrane.(Endocrinology 152: 1616-1626,2011)
Resumo:
Background-Peculiar aspects of Chagas cardiomyopathy raise concerns about efficacy and safety of sympathetic blockade. We studied the influence of beta-blockers in patients with Chagas cardiomyopathy. Methods and Results-We examined REMADHE trial and grouped patients according to etiology (Chagas versus non-Chagas) and beta-blocker therapy. Primary end point was all-cause mortality or heart transplantation. Altogether 456 patients were studied; 27 (5.9%) were submitted to heart transplantation and 202 (44.3%) died. Chagas etiology was present in 68 (14.9%) patients; they had lower body mass index (24.1+/-4.1 versus 26.3+/-5.1, P=0.001), smaller end-diastolic left ventricle diameter (6.7+/-1.0 mm versus 7.0+/-0.9 mm, P=0.001), smaller proportion of beta-blocker therapy (35.8% versus 68%, P<0.001), and higher proportion of spironolactone therapy (74.6% versus 57.8%, P=0.003). Twenty-four (35.8%) patients with Chagas disease were under beta-blocker therapy and had lower serum sodium (136.6+/-3.1 versus 138.4+/-3.1 mEqs, P=0.05) and lower body mass index (22.5+/-3.3 versus 24.9+/-4.3, P=0.03) compared with those who received beta-blockers. Survival was lower in patients with Chagas heart disease as compared with other etiologies. When only patients under beta-blockers were considered, the survival of patients with Chagas disease was similar to that of other etiologies. The survival of patients with beta-blockers was higher than that of patients without beta-blockers. In Cox regression model, left ventricle end-diastolic diameter (hazard ratio, 1.78; CI, 1.15 to 2.76; P=0.009) and beta-blockers (hazard ratio, 0.37; CI, 0.14 to 0.97; P=0.044) were associated with better survival. Conclusions-Our study suggests that beta-blockers may have beneficial effects on survival of patients with heart failure and Chagas heart disease and warrants further investigation in a prospective, randomized trial.
Resumo:
In previous studies, we determined that beta 1 integrins from human colon tumors have elevated levels of alpha 2-6 sialylation, a modification added by beta-galactosamide alpha-2,6-sialyltranferase I (ST6Gal-I). Intriguingly, the beta 1 integrin is thought to be a ligand for galectin-3 (gal-3), a tumor-associated lectin. The effects of gal-3 are complex; intracellular forms typically protect cells against apoptosis through carbohydrate-independent mechanisms, whereas secreted forms bind to cell surface oligosaccharides and induce apoptosis. In the current study, we tested whether alpha 2-6 sialylation of the beta 1 integrin modulates binding to extracellular gal-3. Herein we report that SW48 colonocytes lacking alpha 2-6 sialylation exhibit beta 1 integrin-dependent binding to gal-3-coated tissue culture plates; however, binding is attenuated upon forced expression of ST6Gal-I. Removal of alpha 2-6 sialic acids from ST6Gal-I expressors by neuraminidase treatment restores gal-3 binding. Additionally, using a blot overlay approach, we determined that gal-3 binds directly and preferentially to unsialylated, as compared with alpha 2-6-sialylated, beta 1 integrins. To understand the physiologic consequences of gal-3 binding, cells were treated with gal-3 and monitored for apoptosis. Galectin-3 was found to induce apoptosis in parental SW48 colonocytes ( unsialylated), whereas ST6Gal-I expressors were protected. Importantly, gal-3-induced apoptosis was inhibited by function blocking antibodies against the beta 1 subunit, suggesting that beta 1 integrins are critical transducers of gal-3-mediated effects on cell survival. Collectively, our results suggest that the coordinate up-regulation of gal-3 and ST6Gal-I, a feature that is characteristic of colon carcinoma, may confer tumor cells with a selective advantage by providing a mechanism for blockade of the pro-apoptotic effects of secreted gal-3.
Resumo:
T-cell proliferative hypo responsiveness, a hallmark of paracoccidioidomycosis immune responses, underlies host`s failure in controlling fungus spread, being reversible with antifungal treatment. The mechanisms leading to this hypoproliferation are not well known. Since costimulatory molecules have been shown to profoundly regulate T-cell immune responses, we investigated the hypothesis that the determinants of the responder versus tolerant state may be the regulated expression of, or signaling by, costimulatory molecules. Expression of CD80, CD86, CD28, CD152, ICOS and PD-1 costimulatory molecules were examined on T-cells and monocytes harvested from stimulated and unstimulated PBMC cultures of active paracoccidioidomycosis patients and healthy individuals cured of past paracoccidioidomycosis. Stimuli were gp43, the immunodominant component of Paracoccidioides brasiliensis, and a Candida antigen. While CD28 expression, critical for optimal T-cell activation, was comparable between patients and controls, CD152, PD-1 and ICOS, which preferentially deliver negative signaling, were overexpressed on patients` stimulated and unstimutated T-cells. PBMC cultures were carried out in presence of the respective blocking antibodies which, however, failed to restore T-cell proliferation. CD80 and CD86 were equally expressed on patients` and controls` monocytes, but overexpressed on patients` T-cells. Blockade with the respective blocking antibodies on day 4 of the culture also did not restore T-cell proliferation, while, on day 0, differentially inhibited Candida and gp43 responses, suggesting that different antigens require different costimulatory pathways for antigen presentation. Our data favors the hypothesis, raised from other foreign antigen models, that prolonged in vivo antigen exposure leads to an adaptive tolerance T-cell state which is hardly reverted in vitro. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background and Aim: Although prophylaxis with beta-blockers has been shown to decrease variceal pressure and wall tension in cirrhotic patients, this has not been demonstrated in non-cirrhotic portal hypertension caused by Schistosoma mansoni infection. Methods: Thirteen patients without history of previous gastrointestinal bleeding were included. All of them had high-risk esophageal varices at endoscopy. An endoscopic gauge and a high-frequency endoscopic ultrasonography miniprobe were used to assess transmural variceal pressure and wall tension before and after achieving beta-blockade with propranolol. Results: Baseline variceal pressure decreased from 13.3 +/- 3.5 to 8.2 +/- 2.0 mmHg (P < 0.0001) and wall tension from 500.2 +/- 279.8 to 274.0 +/- 108.3 mg.mm-1. The overall effect of propranolol on decreasing variceal pressure and wall tension expressed in percentage change in relation to baseline values was 35.7 +/- 18.4% and 35.9 +/- 26.7%, respectively (P = 0.9993). Conclusion: Propranolol significantly reduced variceal pressure and wall tension in schistosomiasis.
Resumo:
Regarding all benefits of exercise training, a question remains: how long are these benefits kept? This study evaluated the effect of 3-week detraining after 10 weeks of training in STZ-diabetic rats. Male Wistar rats were assigned into: sedentary controls, trained controls, trained-detrained controls. sedentary diabetic, trained diabetic and trained-detrained diabetic. Arterial pressure (AP) and heart rate (HR) were recorded by a data acquisition system. Baroreflex sensitivity (BRS) was evaluated by HR responses to AP changes induced by infusion of vasoactive drugs. Intrinsic heart rate (IHR), sympathetic tonus (ST) and vagal tonus (VT) were evaluated by pharmacological blockade with atenolol and atropine. Spectral analysis of systolic AP and HR variabilities (HRV) was performed to estimate autonomic modulation to the heart and vessels. Diabetes cardiovascular and autonomic dysfunctions were reversed by exercise training and partially maintained in the 3-week detraining period. In controls, training decreased AP and HR and improved BRS. changes that returned to baseline values after detraining. IHR and VT were improved in trained diabetic rats and remained in detrained diabetic ones. LF component of HRV decreased in trained control group. In diabetics. exercise training improved variance, and absolute LF and HF components of HRV. Only HF was maintained in detrained diabetic group. Moreover, there was an inverse relationship between plasma glucose and the absolute HF component of HRV. These changes probably determined the different survival rate of 80% in diabetic detrained and 51% in diabetic sedentary rats. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Methods: Six adult mixed breed dogs (two males and four females) weighing 7 to 14 kg (10 center dot 5 +/- 1 center dot 5 kg) and aged two to five years were used. Each dog received both treatments in random order: levobupivacaine alone (LBA; n=6) or levobupivacaine plus hyaluronidase (LBH; n=6) administered in the lumbosacral epidural space. Systemic effects, spread and duration of anaesthesia and motor block were determined before treatment and at predetermined intervals. Results: The duration of local anaesthesia was 90 +/- 10 minutes (P=0 center dot 001) for LBH treatment and 150 +/- 15 minutes for LBA treatment. In the LBH treatment, anaesthesia reached the T12 to T13 dermatome and in the LBA treatment it reached the T11 to T12 dermatome in all animals in 5 and 15 minutes, respectively. Complete motor blockade was 75 +/- 12 minutes (P=0 center dot 01) and 120 +/- 15 minutes for LBH and LBA treatments, respectively. Clinical Significance: Hyaluronidase added to levobupivacaine significantly shortens the duration of epidural anaesthesia with the same dermatome spread into the epidural space in dogs.
Resumo:
Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin beta 1 (lam beta 1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lam beta 1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Menopause is recognized as a period of increased risk for coronary heart disease. Although the benefits of exercise training in lowering cardiovascular risk factors are well established, the risks and benefits of hormone therapy have been questioned. The purpose of the present study was to investigate the effects of estrogen therapy (HT) associated or not with exercise training (ET) in autonomic cardiovascular control in ovariectomized (OVX) rats. Female rats were divided into: control, OVX, OVX+HT, OVX+ET and OVX+HT+ET. HT was performed using a 0.25 mg 8-weeks sustained release pellet. Trained groups were submitted to an 8-week exercise training protocol on treadmill. Baroreflex sensitivity (BRS) was evaluated by heart rate responses to arterial pressure (AP) changes, and vagal and sympathetic tonus by pharmacological blockade. Ovariectomy induced an AP increase (123 +/- 2 mmHg vs. 108 +/- 2 mmHg), BRS impairment (similar to 69%), sympathetic activation (similar to 100%) and vagal tonus reduction (similar to 77%) compared to controls. HT or ET normalized the changes in parasympathetic tonus. However, only the association HT + ET was able to promote normalization of AP, BRS and sympathetic tonus, as compared to controls. These results indicate that ET induces cardiovascular and autonomic benefits in OVX rats under HT, suggesting a positive role of this association in the management of cardiovascular risk factor in postmenopausal women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and objective: Vascular endothelial growth factor (VEGF) is known to increase vascular permeability and promote angiogenesis. It is expressed in most types of pleural effusions. However, the exact role of VEGF in the development of pleural effusions has yet to be determined. The anti-VEGF mAb, bevacizumab, has been used in the treatment of cancer to reduce local angiogenesis and tumour progression. This study describes the acute effects of VEGF blockade on the expression of inflammatory cytokines and pleural fluid accumulation. Methods: One hundred and twelve New Zealand rabbits received intrapleural injections of either talc or silver nitrate. In each group, half the animals received an intravenous injection of bevacizumab, 30 min before the intrapleural agent was administered. Five animals from each subgroup were sacrificed 1, 2, 3, 4 or 7 days after the procedure. Twelve rabbits were used to evaluate vascular permeability using Evans`s blue dye. Pleural fluid volume and cytokines were quantified. Results: Animals pretreated with anti-VEGF antibody showed significant reductions in pleural fluid volumes after talc or silver nitrate injection. IL-8 levels, vascular permeability and macroscopic pleural adhesion scores were also reduced in the groups that received bevacizumab. Conclusions: This study showed that bevacizumab interferes in the acute phase of pleural inflammation induced by silver nitrate or talc, reinforcing the role of VEGF as a key mediator in the production of pleural effusions. The results also suggest that bevacizumab should probably be avoided in patients requiring pleurodesis.
Resumo:
Introduction. This study addressed the role of the local renin-angiotensin system (RAS) in the left ventriular hypertropy (LVH) induced by swimming training using pharmacological blockade. Materials and methods. Female Wistar rats treated with enalapril maleate (60 mg.kg(-1).d(-1), n = 38), losartan (20 mg.kg(-1).d(-1), n = 36) or high salt diet (1% NaCl, n = 38) were trained by two protocols (T1: 60-min swimming session, 5 days per week for 10 weeks and T2: the same T1 protocol until the 8(th) week, then 9(th) week they trained twice a day and 10(th) week they trained three times a day). Salt loading prevented activation of the systemic RAS. Haemodynamic parameters, soleus citrate synthase (SCS) activity and LVH (left ventricular/body weight ratio, mg/g) were evaluated. Results. Resting heart rate decreased in all trained groups. SCS activity increased 41% and 106% in T1 and T2 groups, respectively. LVH was 20% and 30% in T1 and T2 groups, respectively. Enalapril prevented 39% of the LVH in T2 group (p < 0.05). Losartan prevented 41% in T1 and 50% in T2 (P < 0.05) of the LVH in trained groups. Plasma renin activity (PRA) was inhibited in all salt groups and it was increased in T2 group. Conclusions. These data provide evidence that the physiological LVH induced by swimming training is regulated by local RAS independent from the systemic, because the hypertrophic response was maintained even when PRA was inhibited by chronic salt loading. However, other systems can contribute to this process.
Resumo:
Phosphodiesterase (PDE) inhibition reduces skeletal muscle atrophy, but the underlying molecular mechanism remains unclear. We used microdialysis to investigate the effects of different PDE inhibitors on interstitial tyrosine concentration as well as proteolytic activity and atrogenes expression in isolated rat muscle. Rolipram, a PDE-4-selective inhibitor, reduced the interstitial tyrosine concentration and rates of muscle protein degradation. The rolipram-induced muscle cAMP increase was accompanied by a decrease in ubiquitin proteasome system (UPS) activity and atrogin-1 mRNA, a ubiquitin-ligase involved in muscle atrophy. This effect was not associated with Akt phosphorylation but was partially blocked by a protein kinase A inhibitor. Fasting increased atrogin-1, MuRF-1 and LC3b expression, and these effects were markedly suppressed by rolipram. Our data suggest that activation of cAMP signaling by PDE-4 blockade leads to inhibition of UPS activity and atrogenes expression independently of Akt. These findings are important for identifying novel approaches to attenuate muscle atrophy. Muscle Nerve 44: 371-381, 2011