111 resultados para Ischemia and reperfusion
Resumo:
The aim of the present study was to evaluate the effect of hyperbaric oxygen therapy (HBO(2)) on the healing process of ischemic colonic anastomoses in rats Forty Wistar rats were divided into four groups control (Group I), control and HBO(2) (Group 11), ischemia (Group III), ischemia and HBO(2) (Group IV) Ischemia was achieved by clamping four centimeters of the colonic arcade On the eighth therapy day, the anastomotic region was removed for quantification of hydroxyproline and immunohistochemical determination of metalloproteinases 1 and 9 (MMP1,MMP9) The immunohistochemical studies showed significantly larger metalloproteinase-labeled areas in Group IV compared with Group III for both MMP1 and MMP9 (p<001) This finding points to a higher remodeling activity of the anastomoses in this experimental group Additionally, animals subjected to hyperbaric oxygen therapy showed both a reduction in interstitial edema and an increase in hydroxyproline concentrations [at the anastomotic site] Therefore, we conclude that HBO(2) is indeed beneficial in anastomotic ischemia
Resumo:
Background. The main purpose of the present investigation was to describe a model of intestinal denervation and in situ intestinal ischemia-reperfusion injury in adult rats, with utilization of the distal branch of the superior mesenteric artery close to the cecum for perfusion. Methods. In the root of the mesentery, the mesenteric artery and vein were completely isolated. Close to the cecal valve, a lymphatic node served as the reference point for the localization of the cecal artery, which was cannulated for perfusion with cold lactated Ringer`s solution. One hundred adult male rats were utilized in the study. Results. In a pilot study, we demonstrated that the cold ischemia time was sufficient to promote histopathologic intestinal changes characteristic of ischemia-reperfusion injury. Among 88 operated animals, 62 (70.5%) survived the procedure. Conclusion. The experimental model described herein has the advantage of preserving the entire intestine, which makes it more suitable for studies of physiological and morphological alterations after intestinal transplantation.
Resumo:
Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploin-sufficient mice, a process that apparently depends on a relative deficiency of p2l activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.
Resumo:
Hepatic ischemia followed by reperfusion (IR) results in mild to severe remote organ injury. Oxidative stress and nitric oxide (NO) seem to be involved in the IR injury. Our aim was to investigate the effects of liver I/R on hepatic function and lipid peroxidation, leukocyte infiltration and NO synthase (NOS) immunostaining in the lung and the kidney. We randomized 24 male Wistar rats into 3 groups: 1) control; 2) 60 minutes of partial (70%) liver 1 and 2 hours of global liver R; and 3) 60 minutes of partial (70%) liver I and 6 hours of global liver R. Groups 2 and 3 showed significant increases in plasma alanine and aspartate aminotransferase levels and in tissue malondialdehyde and myeloperoxidase contents. In the kidney, positive endothelial NOS (eNOS) staining was significantly decreased in group 3 compared with group 1. However, staining for inducible NOS (iNOS) and neuronal NOS (nNOS) did not differ among the groups. In the lung, the staining for eNOS and iNOS did not show significant differences among the groups; no positive nNOS staining was observed in any group. These results suggested that partial liver I followed by global liver R induced liver, kidney, and lung injuries characterized by neutrophil sequestration and increased oxidative stress. In addition, we supposed that the reduced NO formation via eNOS may be implicated in the moderate impairment of renal function, observed by others at 24 hours after liver I/R.
Resumo:
Background: The supraceliac aortic cross-clamping can be an option to save patients with hipovolemic shock due to abdominal trauma. However, this maneuver is associated with ischemia/reperfusion (I/R) injury strongly related to oxidative stress and reduction of nitric oxide bioavailability. Moreover, several studies demonstrated impairment in relaxation after I/R, but the time course of I/R necessary to induce vascular dysfunction is still controversial. We investigated whether 60 minutes of ischemia followed by 30 minutes of reperfusion do not change the relaxation of visceral arteries nor the plasma and renal levels of malondialdehyde (MDA) and nitrite plus nitrate (NOx). Methods: Male mongrel dogs (n = 27) were randomly allocated in one of the three groups: sham (no clamping, n = 9), ischemia (supraceliac aortic cross-clamping for 60 minutes, n = 9), and I/R (60 minutes of ischemia followed by reperfusion for 30 minutes, n = 9). Relaxation of visceral arteries (celiac trunk, renal and superior mesenteric arteries) was studied in organ chambers. MDA and NOx concentrations were determined using a commercially available kit and an ozone-based chemiluminescence assay, respectively. Results: Both acetylcholine and calcium ionophore caused relaxation in endothelium-intact rings and no statistical differences were observed among the three groups. Sodium nitroprusside promoted relaxation in endothelium-denuded rings, and there were no inter-group statistical differences. Both plasma and renal concentrations of MDA and NOx showed no significant difference among the groups. Conclusion: Supraceliac aortic cross-clamping for 60 minutes alone and followed by 30 minutes of reperfusion did not impair relaxation of canine visceral arteries nor evoke biochemical alterations in plasma or renal tissue.
Resumo:
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 mu g) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Resumo:
Background. Diving liver ischemia, the decrease in mitochondrial energy causes cellular damage that is aggravated after reperfusion. This injury can trigger a systemic inflammatory syndrome, also producing remote organ damage. Several substances have been employed to decrease this inflammatory response during liver transplantation, liver resections, and hypovolemic shock. The aim of this study was to evaluate the effects of hypertonic saline solution and the best timing of administration to prevent organ injury during experimental liver ischemia/reperfusion. Methods. Rats underwent 1 hr of warm liver ischemia followed by reperfusion. Eighty-four rats Were allocated into 6 groups: sham group, control of ischemia group) (C), pre-ischemia treated NaCl 0.9% (ISS) and NaCl 7.5% (HTS) groups, pre-repefusion ISS, and HTS groups. Blood and tissue samples were collected 4 hr after reperfusion. Results. HTS showed beneficial effects in prevention of live ischemia/reperfusion injury. HTS groups developed increases in AST and ALT levels that were significantly less than ISS groups; however, the HTS pre-reperfusion group showed levels significantly less than the HTS pre-ischemia group. No differences in IL-6 and IL-10 levels, were observed. A significant decrease in mitochondrial dysfunction as well as hepatic edema was observed in the HTS pre-reperfusion group. Pulmonary vascular permeability Was significantly less in the pre-reperfusion HTS group compared to the ISS group. No differences in myeloperoxidase activity were observed. The liver histologic score was significantly less in the pre-reperfusion HTS group compared to the pre-ischemia I-ITS group. Conclusion. HTS ameliorated local and systemic injuries in experimental liver ischemia/reperfusion. Infusion of HTS in the pre-reperfusion period may be an important adjunct to accomplish the best results. (Surgery 2010;147:415-23.)
Resumo:
Our laboratory demonstrated that training program attenuated the inflammatory responses in lung ischemia/reperfusion (IR). Considering the importance of the inflammatory responses on the cardiovascular system, we evaluate the effect of physical training on the vascular responsiveness and its underlying mechanism after lung IR. Male Wistar rats were submitted to run training and lung IR. Concentration-response curves for relaxing and contracting agents were obtained. Protein expressions of SOD-1 and p47(phox), plasma nitritre/nitrate (NO (x) (-) ) and interleukin 6 (IL-6) were evaluated. A decreased in the potency for acetylcholine and phenylephrine associated with an upregulation of the p47(phox) expression were found after Lung IR as well as an increase in IL-6 and NO (x) (-) levels. Run training attenuated the vascular dysfunction that was accompanied by reduction of the p47(phox) protein expression and IL-6 levels. Our findings show the beneficial effect of training on the vascular function that was associated with reduction in inflammatory response in lung IR.
Resumo:
Intestinal ischemia-reperfusion (I/R) injury may cause acute systemic and lung inflammation. Here, we revisited the role of TNF-alpha in an intestinal I/R model in mice, showing that this cytokine is not required for the local and remote inflammatory response upon intestinal I/R injury using neutralizing TNF-alpha antibodies and TNF ligand-deficient mice. We demonstrate increased neutrophil recruitment in the lung as assessed by myeloperoxidase activity and augmented IL-6, granulocyte colony-stimulating factor, and KC levels, whereas TNF-alpha levels in serum were not increased and only minimally elevated in intestine and lung upon intestinal I/R injury. Importantly, TNF-alpha antibody neutralization neither diminished neutrophil recruitment nor any of the cytokines and chemokines evaluated. In addition, the inflammatory response was not abrogated in TNF and TNF receptors 1 and 2-deficient mice. However, in view of the damage on the intestinal barrier upon intestinal I/R with systemic bacterial translocation, we asked whether Toll-like receptor (TLR) activation is driving the inflammatory response. In fact, the inflammatory lung response is dramatically reduced in TLR2/4-deficient mice, confirming an important role of TLR receptor signaling causing the inflammatory lung response. In conclusion, endogenous TNF-alpha is not or minimally elevated and plays no role as a mediator for the inflammatory response upon ischemic tissue injury. By contrast, TLR2/4 signaling induces an orchestrated cytokine/chemokine response leading to local and remote pulmonary inflammation, and therefore disruption of TLR signaling may represent an alternative therapeutic target.
Resumo:
Ischemia-reperfusion injury is the major cause of organ dysfunction or even nonfunction following transplantation. It can attenuate the long-term survival of transplanted organs. To evaluate the severity of renal ischemia injury determined by histology, we applied laser(442 nm and 532 nm) induced fluorescence (LIF), mitochondria respiration, and membrane swelling to evaluate 28 Wistar rats that underwent left kidney warm ischemia for 20, 40, 60, or 80 minutes. LIF performed before ischemia (control) was repeated at 20, 40, 60, and 80 minutes thereafter. We harvested left kidney tissue samples immediately after LIF determination for histology and mitochondrial analyses: state 3 and 4 respiration, respiration control rate (RCR), and membrane swelling. The association of optic spectroscopy with histological damage showed: LIF, 442 nm (r(2) = 0.39, P < .001) and 532 nm, (r(2) = 0.18, P = .003); reflecting laser/fluorescence-induced, 442 nm (r(2) = 0.20, P = .002) and 532 nm (r(2) = 0.004, P = .67). The associations between mitochondria function and tissue damage were: state 3 respiration (r(2) = 0.43, P = .0004), state 4 respiration (r(2) = 0.03, P = 0.38), RCR (r(2) = 0.28, P = .007), and membrane swelling (r(2) = 0.02, P = .43). The intensity of fluorescence emitted by tissue excited by laser, especially at a wave length of 442 nm, was determined in real time. Mitochondrial state 3 respiration and respiratory control ratio also exhibited good correlations with the grade of ischemic tissue damage.
Resumo:
Ischemia followed by reperfusion is known to negatively affect mitochondrial function by inducing a deleterious condition termed mitochondrial permeability transition. Mitochondrial permeability transition is triggered by oxidative stress, which occurs in mitochondria during ischemia-reperfusion as a result of lower antioxidant defenses and increased oxidant production. Permeability transition causes mitochondrial dysfunction and can ultimately lead to cell death. A drug able to minimize mitochondrial damage induced by ischemia-reperfusion may prove to be clinically effective. We aimed to analyze the effects of nicorandil, an ATP-sensitive potassium channel agonist and vasodilator, on mitochondrial function of rat hearts and cardiac HL-1 cells submitted to ischemia-reperfusion. Nicorandil decreased mitochondrial swelling and calcium uptake. It also decreased reactive oxygen species formation and thiobarbituric acid reactive substances levels, a lipid peroxidation biomarker. We thus confirm previous reports that nicorandil inhibits mitochondrial permeability transition and demonstrate that nicorandil inhibits this process by preventing oxidative damage and mitochondrial calcium overload induced by ischemia-reperfusion, resulting in improved cardiomyocyte viability. These results may explain the good clinical results obtained when using nicorandil in the treatment of ischemic heart disease.
Resumo:
Background: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings: Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.
Resumo:
Aims To test the effects of early exercise training (ET) on left ventricular (LV) and autonomic functions, haemodynamics, tissues blood flows (BFs), maximal oxygen consumption (VO(2) max), and mortality after myocardial infarction (MI) in rats. Methods and results Male Wistar rats were divided into: control (C), sedentary-infarcted (SI), and trained-infarcted (TI). One week after MI, TI group underwent an ET protocol (90 days, 50-70% VO2 max). Left ventricular function was evaluated noninvasively and invasively. Baroreflex sensitivity, heart rate variability, and pulse interval were measured. Cardiac output (CO) and regional BFs were determined using coloured microspheres. Infarcted area was reduced in TI (19 +/- 6%) compared with SI (34 +/- 5%) after ET. Exercise training improved the LV and autonomic functions, the CO and regional BF changes induced by MI, as well as increased SERCA2 expression and mRNA vascular endothelial growth factor levels. These changes brought about by ET resulted in mortality rate reduction in the TI (13%) group compared with the SI (54%) group. Conclusion Early aerobic ET reduced cardiac and peripheral dysfunctions and preserved cardiovascular autonomic control after MI in trained rats. Consequently, these ET-induced changes resulted in improved functional capacity and survival after MI.
Resumo:
Background/Aims: Cytokines have a significant role in the response to injury following liver transplantation, but the origin and course of such molecules are not completely known. The aim of this study was to evaluate the production and liver metabolism of the inflammatory cytokines interleukin (IL)-1 beta, IL-6, IL-8, interferon (IFN)-Y and tumor necrosis factor (TNF)-alpha in orthotopic liver transplantation (OLT), comparing the conventional and the piggyback methods. Methodology: We performed a study of 30 patients who underwent elective OLT and were randomized for the conventional or piggyback techniques at the beginning of the operation. The amount of cytokines and their hepatic metabolism were calculated based on plasma concentrations and vascular blood flow at 2, 5, 10, 15, 30, 60, 90, and 120 minutes after revascularization. Results: The amount of IL-1 beta in portal blood was higher in patients who underwent surgery using the conventional technique (estimate interest = 63,783.9 +/- 16,586.1 pg/min, versus 11,979.6 +/- 16,585.7 pg/min in the piggyback group, p=0.035). There were no significant differences between the two operative`s methods for IL-6, IL-8, IFN-Y and TNF-alpha production. The hepatic metabolism of cytokines was not different between groups. Although all the curves showed higher amounts of cytokines with the conventional technique, these were not statistically significant. Conclusion: The study shows the similarity between the two techniques concerning the stimuli for the production of inflammatory molecules.
Resumo:
Introduction. The quality and effectiveness of myocardial protection are fundamental problems to expand the use of and consequently good outcomes of donated hearts for transplantation. Objective. The purpose of this investigation was to compare the cardioprotective effects of Krebs-Henseleit, Bretschneider-HTK, St Thomas, and Celsior solutions using a modified nonrecirculating Langendorff column model of isolated perfused rat heart during prolonged cold storage. Materials and Methods. After removal 36 rat hearts underwent isolated perfusion into a Langendorff apparatus using Krebs-Henseleit solution for a 15-minute period of recovery; we excluded organs that did not maintain an aortic pressure above 100 m Hg. Subsequently, we equally distributed the hearts into four groups according to the cardioprotection solution; group 1, Krebs-Henseleit (control); group II, Bretschneider-HTK; group III, St Thomas; and group IV, Celsior. Each heart received the specific cardioplegic solution at 10 C for 2-hour storage at 20 C, before a 15 minutes perfusion with Krebs-Henseleit solution for recovery and stabilization. After 60 additional minutes of perfusion, every 5 minutes we determined heart rate (HR), coronary flow (CF), left ventricular systolic pressure (LVSP), and positive and negative peak of the first derivative of left ventricular pressure (+dP/dt and dP/dt, respectively). Results. Comparative analysis by Turkey`s test showed the following performances among the groups at 60 minutes of reperfusion: HR: II = IV > III > I; CF: II = IV > I = III; LVSP: IV > I = II = III; +dP/dt: IV > I = II = III; and dP/dt: IV = II > I = II. Conclusion. Cardioprotective solutions generally used in clinical practice are not able to avoid hemodynamic alterations in hearts exposed to prolonged ischemia. Celsior solution showed better performance than Bretschneider-HTK, St Thomas, and Krebs-Henseleit.