109 resultados para Invariant integrals
Resumo:
The absorption cross section of Reissner-Nordstroumlm black holes for the electromagnetic field is computed numerically for arbitrary frequencies, taking into account the coupling of the electromagnetic and gravitational perturbations. We also compute the conversion coefficients of electromagnetic to gravitational waves by scattering from a Reissner-Nordstroumlm black hole.
Resumo:
Chaotic dynamical systems with two or more attractors lying on invariant subspaces may, provided certain mathematical conditions are fulfilled, exhibit intermingled basins of attraction: Each basin is riddled with holes belonging to basins of the other attractors. In order to investigate the occurrence of such phenomenon in dynamical systems of ecological interest (two-species competition with extinction) we have characterized quantitatively the intermingled basins using periodic-orbit theory and scaling laws. The latter results agree with a theoretical prediction from a stochastic model, and also with an exact result for the scaling exponent we derived for the specific class of models investigated. We discuss the consequences of the scaling laws in terms of the predictability of a final state (extinction of either species) in an ecological experiment.
Resumo:
Twisted quantum field theories on the Groenewold-Moyal plane are known to be nonlocal. Despite this nonlocality, it is possible to define a generalized notion of causality. We show that interacting quantum field theories that involve only couplings between matter fields, or between matter fields and minimally coupled U(1) gauge fields are causal in this sense. On the other hand, interactions between matter fields and non-Abelian gauge fields violate this generalized causality. We derive the modified Feynman rules emergent from these features. They imply that interactions of matter with non-Abelian gauge fields are not Lorentz- and CPT-invariant.
Resumo:
We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.
Resumo:
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.
Resumo:
In the Hammersley-Aldous-Diaconis process, infinitely many particles sit in R and at most one particle is allowed at each position. A particle at x, whose nearest neighbor to the right is at y, jumps at rate y - x to a position uniformly distributed in the interval (x, y). The basic coupling between trajectories with different initial configuration induces a process with different classes of particles. We show that the invariant measures for the two-class process can be obtained as follows. First, a stationary M/M/1 queue is constructed as a function of two homogeneous Poisson processes, the arrivals with rate, and the (attempted) services with rate rho > lambda Then put first class particles at the instants of departures (effective services) and second class particles at the instants of unused services. The procedure is generalized for the n-class case by using n - 1 queues in tandem with n - 1 priority types of customers. A multi-line process is introduced; it consists of a coupling (different from Liggett's basic coupling), having as invariant measure the product of Poisson processes. The definition of the multi-line process involves the dual points of the space-time Poisson process used in the graphical construction of the reversed process. The coupled process is a transformation of the multi-line process and its invariant measure is the transformation described above of the product measure.
Resumo:
The purpose of this paper is to explicitly describe in terms of generators and relations the universal central extension of the infinite dimensional Lie algebra, g circle times C[t, t(-1), u vertical bar u(2) = (t(2) - b(2))(t(2) - c(2))], appearing in the work of Date, Jimbo, Kashiwara and Miwa in their study of integrable systems arising from the Landau-Lifshitz differential equation.
Resumo:
The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena`s correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of d-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully d-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low- frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.
Resumo:
Accurate knowledge of several Me-B (Me - Metal) phase diagrams are important to evaluate higher order systems such as Me-Si-B ternaries. This work presents results of microstructural characterization of as-cast Cr-B alloys which are significant to assess the liquid compositions associated to most of the invariant reactions of this system. Alloys of different compositions were prepared by arc melting pure Cr and B pressed powder mixtures under argon atmosphere in a water-cooled copper crucible with non-consumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy (SEM), using back-scattered electron (BSE) image mode and X-ray diffraction (XRD). In general, a good agreement was found between our data and those from the currently accepted Cr-B phase diagram. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This work presents results of microstructural characterization of as-cast Cr-Si alloys. The alloys were prepared by arc melting pure Cr (min. 99.996%) and Si (min. 99.998%) powder mixtures under argon atmosphere in a water-cooled copper crucible with nonconsumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy (SEM), using the back-scattered electron (BSE) image mode and X-ray diffraction (XRD). The results confirm the currently accepted Cr-Si phase diagram in terms of the invariant reactions and solid phases present in this system. Small corrections are proposed for the compositions of the liquid phase in the following reactions: (i) L double left right arrow Cr-ss+Cr3Si, from 15 to 16 at.% Si; (ii) L+alpha Cr5Si3 double left right arrow CrSi, from 51 at.% Si to slightly above 53 at.% Si; (iii) L double left right arrow CrSi+CrSi2, from 56 to slightly above 57 at.% Si; (iv) L double left right arrow CrSi2+Si, from 82 to slightly above 85 at.% Si. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This work deals with nonlinear geometric plates in the context of von Karman`s theory. The formulation is written such that only the boundary in-plane displacement and deflection integral equations for boundary collocations are required. At internal points, only out-of-plane rotation, curvature and in-plane internal force representations are used. Thus, only integral representations of these values are derived. The nonlinear system of equations is derived by approximating all densities in the domain integrals as single values, which therefore reduces the computational effort needed to evaluate the domain value influences. Hyper-singular equations are avoided by approximating the domain values using only internal nodes. The solution is obtained using a Newton scheme for which a consistent tangent operator was derived. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a BEM formulation developed particularly for analysis of plates reinforced by rectangular beams. This is an extended version of a Previous paper that only took into account bending effects. The problem is now re-formulated to consider bending and membrane force effects. The effects of the reinforcements are taken into account by using a simplified scheme that requires application of ail initial stress field to locally correct the bending and stretching stiffness of the reinforcement regions. The domain integrals due to the presence of the reinforcements are then transformed to the reinforcement/plate interface. To reduce the number of degrees of freedom related to the presence of the reinforcement, the proposed model was simplified to consider only bending and stretching rigidities in the direction of the beams. The complete model can be recovered by applying all six internal force correctors, corresponding to six degrees of freedom per node. Examples are presented to confirm the accuracy of the formulation and to illustrate the level of simplification introduced by this strong reduction in the number of degrees of freedom. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a BEM formulation developed to analyse reinforced plate bending. The reinforcements are formulated using a simplified scheme based on applying an initial moment field adopted to locally correct the stiffness of the reinforcement regions. The domain integrals due to the presence of the reinforcements are then transformed to the reinforcement/plate interface. The increase in system stiffness due to the reinforcements can be taken into account independently for each coefficient. Thus, one can conveniently reduce the number of degrees of freedom required in considering the reinforcement. Only one degree-of-freedom is required at each internal node when taking into account only the flexural stiffness of beams. Examples are presented to confirm the accuracy of the formulation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a formulation for representation of stiffeners in plane stress by the boundary elements method (BEM) in linear analysis is presented. The strategy is to adopt approximations for the displacements in the central line of the stiffener. With this simplification the Spurious oscillations in the stress along stiffeners with small thickness is prevented. Worked examples are analyzed to show the efficiency of these techniques, especially in the insertion of very narrow sub-regions, in which quasi-singular integrals are calculated, with stiffeners that are much stiffer than the main domain. The results obtained with this formulation are very close to those obtained with other formulations. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a domain boundary element formulation for inelastic saturated porous media with rate-independent behavior for the solid skeleton. The formulation is then applied to elastic-plastic behavior for the solid. Biot`s consolidation theory, extended to include irreversible phenomena is considered and the direct boundary element technique is used for the numerical solution after time discretization by the implicit Euler backward algorithm. The associated nonlinear algebraic problem is solved by the Newton-Raphson procedure whereby the loading/unloading conditions are fully taken into account and the consistent tangent operator defined. Only domain nodes (nodes defined inside the domain) are used to represent all domain values and the corresponding integrals are computed by using an accurate sub-elementation scheme. The developments are illustrated through the Drucker-Prager elastic-plastic model for the solid skeleton and various examples are analyzed with the proposed algorithms. (c) 2008 Elsevier B.V. All rights reserved.