54 resultados para Individual ability
Resumo:
Recent advances in the control of molecular engineering architectures have allowed unprecedented ability of molecular recognition in biosensing, with a promising impact for clinical diagnosis and environment control. The availability of large amounts of data from electrical, optical, or electrochemical measurements requires, however, sophisticated data treatment in order to optimize sensing performance. In this study, we show how an information visualization system based on projections, referred to as Projection Explorer (PEx), can be used to achieve high performance for biosensors made with nanostructured films containing immobilized antigens. As a proof of concept, various visualizations were obtained with impedance spectroscopy data from an array of sensors whose electrical response could be specific toward a given antibody (analyte) owing to molecular recognition processes. In addition to discussing the distinct methods for projection and normalization of the data, we demonstrate that an excellent distinction can be made between real samples tested positive for Chagas disease and Leishmaniasis, which could not be achieved with conventional statistical methods. Such high performance probably arose from the possibility of treating the data in the whole frequency range. Through a systematic analysis, it was inferred that Sammon`s mapping with standardization to normalize the data gives the best results, where distinction could be made of blood serum samples containing 10(-7) mg/mL of the antibody. The method inherent in PEx and the procedures for analyzing the impedance data are entirely generic and can be extended to optimize any type of sensor or biosensor.
Resumo:
Backgound and Aims: Correct gene dosage of SOX3 is critical for the development of the hypothalamo-pituitary axis. Both overdosage of SOX3, as a result of gene duplication, and loss of function resulting from expansion of the first polyalanine (PA) tract are associated with variable degrees of hypopituitarism, with or without mental retardation. The aim of this study was to further investigate the contribution of SOX3 in the etiology of hypopituitarism and the mechanisms involved in the phenotypic variability. Methods: We screened 154 patients with congenital hypopituitarism and an undescended posterior pituitary for mutations in SOX3 and variability in the length of the first PA tract. In addition, 300 patients with variable septooptic dysplasia were screened for variability of the PA tract. Results: We report a novel 18-base pair deletion (p.A243_A248del6, del6PA) in a female patient with hypopituitarism resulting in a 2-fold increase in transcriptional activation in vitro, compared with wild-type SOX3. We also identified a previously reported seven-alanine expansion (p.A240_A241ins7, +7PA) in two male siblings with isolated GH deficiency and a distinct phenotype, in addition to the nonsynonymous variant p.R5Q in an unrelated individual; this appears to have no functional effect on the protein. In contrast to +7PA, del6PA maintained its ability to repress beta-catenin mediated transcription in vitro. Conclusion: This is the first study to report that PA tract deletions associated with hypopituitarism have functional consequences in vitro, possibly due to increased activation of SOX3 target genes. In addition, we have expanded the phenotypic spectrum associated with PA tract expansion (+7PA) mutations to include panhypopituitarism or isolated GH deficiency, with or without mental retardation. (J Clin Endocrinol Metab 96: E685-E690, 2011)
Resumo:
Streptococcus pyogenes infections remain a health problem in several countries due to poststreptococcal sequelae. We developed a vaccine epitope (StreptInCor) composed of 55 amino acids residues of the C-terminal portion of the M protein that encompasses both T and B cell protective epitopes. The nuclear magnetic resonance (NMR) structure of the StreptInCor peptide showed that the structure was composed of two microdomains linked by an 18-residue alpha-helix. A chemical stability study of the StreptInCor folding/unfolding process using far-UV circular dichroism showed that the structure was chemically stable with respect to pH and the concentration of urea. The T cell epitope is located in the first microdomain and encompasses 11 out of the 18 alpha-helix residues, whereas the B cell epitope is in the second microdomain and showed no alpha-helical structure. The prediction of StreptInCor epitope binding to different HLA class II molecules was evaluated based on an analysis of the 55 residues and the theoretical possibilities for the processed peptides to fit into the P1, P4, P6, and P9 pockets in the groove of several HLA class II molecules. We observed 7 potential sites along the amino acid sequence of StreptInCor that were capable of recognizing HLA class II molecules (DRB1*, DRB3*, DRB4*, and DRB5*). StreptInCoroverlapping peptides induced cellular and humoral immune responses of individuals bearing different HLA class II molecules and could be considered as a universal vaccine epitope.
Resumo:
Recent studies have demonstrated that spatial patterns of fMRI BOLD activity distribution over the brain may be used to classify different groups or mental states. These studies are based on the application of advanced pattern recognition approaches and multivariate statistical classifiers. Most published articles in this field are focused on improving the accuracy rates and many approaches have been proposed to accomplish this task. Nevertheless, a point inherent to most machine learning methods (and still relatively unexplored in neuroimaging) is how the discriminative information can be used to characterize groups and their differences. In this work, we introduce the Maximum Uncertainty Linear Discrimination Analysis (MLDA) and show how it can be applied to infer groups` patterns by discriminant hyperplane navigation. In addition, we show that it naturally defines a behavioral score, i.e., an index quantifying the distance between the states of a subject from predefined groups. We validate and illustrate this approach using a motor block design fMRI experiment data with 35 subjects. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Purpose: The aversive nature of regenerative milieu is the main problem related to the failure of neuronal restoration in the injured spinal cord which however might be addressed with an adequate repair intervention. We evaluated whether glial cell line-derived neurotrophic factor (GDNF) may increase the ability of sciatic nerve graft, placed in a gap promoted by complete transections of the spinal cord, to enhance motor recovery and local fiber growth. Methods: Rats received a 4 mm-long gap at low thoracic level and were repaired with a fragment of the sciatic nerve. GDNF was added (NERVE+GDNF) or not to the grafts (NERVE-GDNF). Motor behavior score (BBB) and sensorimotor tests-linked to the combined behavior score (CBS), which indicate the degree of the motor improvement and the percentage of functional deficit, respectively, and also the spontaneous motor behavior in an open field by means of an infrared motion sensor activity monitor were analyzed. At the end of the third month post surgery, the tissue composed by the graft and the adjacent regions of the spinal cord was removed and submitted to the immunohistochemistry of the neurofilament-200 (NF-200), growth associated protein-43 (GAP-43), microtubule associated protein-2 (MAP-2), 5-hidroxytryptamine (serotonin, 5-HT) and calcitonin gene related peptide (CGRP). The immunoreactive fibers were quantified at the epicenter of the graft by means of stereological procedures. Results: Higher BBB and lower CBS levels (p < 0.001) were found in NERVE+GDNF rats. GDNF added to the graft increased the levels of individual sensorimotor tests mainly at the third month. Analysis of the spontaneous motor behavior showed decreases in the time and number of small movement events by the third month without changes in time and number of large movement events in the NERVE+GDNF rats. Immunoreactive fibers were encountered inside the grafts and higher amounts of NF-200, GAP-43 and MAP-2 fibers were found in the epicenter of the graft when GDNF was added. A small amount of descending 5-HT fibers was seen reentering in the adjacent caudal levels of the spinal cords which were grafted in the presence of GDNF, event that has not occurred without the neurotrophic factor. GDNF in the graft also led to a large amount of MAP-2 perikarya and fibers in the caudal levels of the cord gray matter, as determined by the microdensitometric image analysis. Conclusions: GDNF added to the nerve graft favored the motor recovery, local neuronal fiber growth and neuroplasticity in the adjacent spinal cord.
Resumo:
Objective: Bronchial typical carcinoid tumors are tow-grade malignancies. However, metastases are diagnosed in some patients. Predicting the individual risk of these metastases to determine patients eligible for a radical lymphadenectomy and patients to be followed-up because of distant metastasis risk is relevant. Our objective was to screen for predictive criteria of bronchial typical carcinoid tumor aggressiveness based on a logistic regression model using clinical, pathological and biomolecular data. Methods: A multicenter retrospective cohort study, including 330 consecutive patients operated on for bronchial typical carcinoid tumors and followed-up during a period more than 10 years in two university hospitals was performed. Selected data to predict the individual risk for both nodal and distant metastasis were: age, gender, TNM staging, tumor diameter and location (central/peripheral), tumor immunostaining index of p53 and Ki67, Bcl2 and the extracellular density of neoformed microvessels and of collagen/elastic extracellular fibers. Results: Nodal and distant metastasis incidence was 11% and 5%, respectively. Univariate analysis identified all the studied biomarkers as related to nodal metastasis. Multivariate analysis identified a predictive variable for nodal metastasis: neo angiogenesis, quantified by the neoformed pathological microvessels density. Distant metastasis was related to mate gender. Discussion: Predictive models based on clinical and biomolecular data could be used to predict individual risk for metastasis. Patients under a high individual risk for lymph node metastasis should be considered as candidates to mediastinal lymphadenectomy. Those under a high risk of distant metastasis should be followed-up as having an aggressive disease. Conclusion: Individual risk prediction of bronchial typical carcinoid tumor metastasis for patients operated on can be calculated in function of biomolecular data. Prediction models can detect high-risk patients and help surgeons to identify patients requiring radical lymphadenectomy and help oncologists to identify those as having an aggressive disease requiring prolonged follow-up. (C) 2008 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
Resumo:
Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol`s effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.
Resumo:
Purpose: We tested whether the combination of 4 established cell cycle regulators (p53, pRB, p21 and p27) could improve the ability to predict clinical outcomes in a large multi-institutional collaboration of patients with pT3-4N0 or pTany Npositive urothelial carcinoma of the bladder. We also assessed whether the combination of molecular markers is superior to any individual biomarker. Materials and Methods: The study comprised 692 patients with pT3-4N0 or pTany Npositive urothelial carcinoma of the bladder treated with radical cystectomy and bilateral lymphadenectomy (median followup 5.3 years). Scoring was performed using advanced cell imaging and color detection software. The base model incorporated patient age, gender, stage, grade, lymphovascular invasion, number of lymph nodes removed, number of positive lymph nodes, concomitant carcinoma in situ and adjuvant chemotherapy. Results: Individual molecular markers did not improve the predictive accuracy for disease recurrence and cancer specific mortality. Combination of all 4 molecular markers into number of altered molecular markers resulted in significantly 1 higher predictive accuracy than any single biomarker (p < 0.001.). Moreover addition of number of altered molecular markers to the base model significantly improved the predictive accuracy for disease recurrence (3.9%, p < 0.001) and cancer specific mortality (4.3%, p < 0.001). Addition of number of altered molecular markers retained statistical significance for improving the prediction of clinical outcomes in the subgroup of patients with pT3N0 (280), pT4N0 (83) and pTany Npositive (329) disease (p < 0.001). Conclusions: While the status of individual molecular markers does not add sufficient value to outcome prediction in patients with advanced urothelial carcinoma of the bladder, combinations of molecular markers may improve molecular staging, prognostication and possibly prediction of response to therapy.
Resumo:
The ability of an individual to sense pain is fundamental for its capacity to adapt to its environment and to avoid damage. The sensation of pain can be enhanced by acute or chronic inflammation. In the present study, we have investigated whether inflammatory pain, as measured by hypernociceptive responses, was modified in the absence of the microbiota. To this end, we evaluated mechanical nociceptive responses induced by a range of inflammatory stimuli in germ-free and conventional mice. Our experiments show that inflammatory hypernociception induced by carrageenan, lipopolysaccharide, TNF-alpha, IL-1 beta, and the chemokine CXCL1 was reduced in germfree mice. In contrast, hypernociception induced by prostaglandins and dopamine was similar in germ-free or conventional mice. Reduction of hypernociception induced by carrageenan was associated with reduced tissue inflammation and could be reversed by reposition of the microbiota or systemic administration of lipopolysaccharide. Significantly, decreased hypernociception in germ-free mice was accompanied by enhanced IL-10 expression upon stimulation and could be reversed by treatment with an anti-IL-10 antibody. Therefore, these results show that contact with commensal microbiota is necessary for mice to develop inflammatory hypernociception. These findings implicate an important role of the interaction between the commensal microbiota and the host in favoring adaptation to environmental stresses, including those that cause pain.
Resumo:
Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.
Resumo:
The objective of this article was to estimate quantitative differences for GAPDH transcripts and poly(A) mRNA: (i) between oocytes collected from cumulus-oocyte complexes (COCs) qualified morphologically as grades A and B; (ii) between grade A oocytes before and after in vitro maturation (IVM); and (iii) among in vitro-produced embryos at different developmental stages. To achieve this objective a new approach was developed to estimate differences between poly(A) mRNA when using small samples. The approach consisted of full-length cDNA amplification (acDNA) monitored by real-time PCR, in which the cDNA from half of an oocyte or embryo was used as a template. The GAPDH gene was amplified as a reverse transcription control and samples that were not positive for GAPDH transcripts were discarded. The fold differences between two samples were estimated using delta Ct and statistical analysis and were obtained using the pairwise fixed reallocation randomization test. It was found that the oocytes recovered from grade B COCs had quantitatively less poly(A) mRNA (p < 0.01) transcripts compared with grade A COCs (1 arbitrary unit expression rate). In the comparison with immature oocytes (I arbitrary unit expression rate), the quantity of poly(A) mRNA did not change during IVM, but declined following IVF and varied with embryo culture (p < 0.05). Amplification of cDNA by real-time PCR was an efficient method to estimate differences in the amount of poly(A) mRNA between oocytes and embryos. The results obtained from individual oocytes suggested an association between poly(A) mRNA abundance and different morphological qualities of oocytes from COCs. In addition, a poly(A) mRNA profile was characterized from oocytes undergoing IVM, fertilization and blastocyst heating.
Resumo:
Background & aim: Many disease outbreaks of food origin are caused by foods prepared in Food Service and Nutrition Units of hospitals, affecting hospitalized patients who, in most cases, are immunocompromised and therefore at a higher risk of severe worsening of their clinical status. The aim of this study was to determine the variations in temperature and the time-temperature factor of hospital diets. Methods: The time and temperature for the preparation of 4 diets of modified consistency were determined on 5 nonconsecutive days in a hospital Diet and Nutrition Unit at the end of preparation and during the maintenance period, portioning and distribution at 3 sites, i.e., the first, the middle and the last to receive the diets. Results and discussion: All foods reached an adequate temperature at the end of cooking, but temperature varied significantly from the maintenance period to the final distribution, characterizing critical periods for microorganism proliferation. During holding, temperatures that presented a risk were reached by 16.7% of the meats and 59% of the salads of the general diet, by 16.7% of the garnishes in the bland diet and by 20% of the meats and garnishes in the viscous diet. The same occurred at the end of distribution for 100% of the hot samples and of the salads and for 61% of the desserts. None of the preparations remained at risk temperature for a time exceeding that established by law. Conclusion: The exposure to inadequate temperature did not last long enough to pose risks to the patient.
Resumo:
Context: Type 1 pseudohypoaldosteronism (PHA1), a primary form of mineralocorticoid resistance, isdueto inactivating mutations of the NR3C2 gene, coding for the mineralocorticoid receptor (MR). Objective: The objective of the study was to assess whether different NR3C2 mutations have distinct effects on the pattern of MR-dependent transcriptional regulation of aldosterone-regulated genes. Design and Methods: Four MR mutations affecting residues in the ligand binding domain, identified in families with PHA1, were tested. MR proteins generated by site-directed mutagenesis were analyzed for their binding to aldosterone and were transiently transfected into renal cells to explore the functional effects on the transcriptional activity of the receptors by cis-trans-cotrans-activation assays and by measuring the induction of endogenous gene transcription. Results: Binding assays showed very low or absent aldosterone binding for mutants MR(877Pro), MR(848Pro), and MR(947stop) and decreased affinity for aldosterone of MR(843Pro). Compared with wildtype MR, the mutations p.Leu843Pro and p.Leu877Pro displayed half-maximal aldosterone-dependent transactivation of reporter genes driven by mouse mammary tumor virus or glucocorticoid response element-2 dependent promoters, whereas MR(848Pro) and MR(947stop) nearly or completely lost transcriptional activity. Although MR(848Pro) and MR(947stop) were also incapable of inducing aldosterone-dependent gene expression ofendogenoussgk1, GILZ, NDRG2, and SCNN1A, MR(843Pro) retained complete transcriptional activity on sgk1 and GILZ gene expression, and MR(877Pro) negatively affected the expression of sgk1, NDRG2, and SCNN1A. Conclusions: Our data demonstrate that MR mutations differentially affect individual gene expression in a promoter-dependent manner. Investigation of differential gene expression profiles in PHA1 may allow a better understanding of the molecular substrate of phenotypic variability and to elucidate pathogenic mechanisms underlying the disease. (J Clin Endocrinol Metab 96: E519-E527, 2011)
Resumo:
We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R (0c) , has the smaller population number R (0p) . Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R (0c) can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.
Resumo:
This study analyzed in Balb/C mice the effects of individual housing on behavior, serum corticosterone and resistance to Ehrlich tumor growth. Mice (60 days old) were individually (IH) or grouped housed (G) (10-12 animals/cage) for 14-21 days. The 1st day of the housing condition was considered experimental day 1 (ED1). Results showed that on ED21, IH mice, when compared to G mice, presented no differences on corticosterone serum levels when kept undisturbed; however, an increased level of this hormone was observed in IH mice after an immobilization stress challenge. An increased time spent in the plus-maze closed arms and a decreased time in the open arms were also observed in IH mice. When compared to G animals, after inoculation with 105 Ehrlich tumor cells on ED1, IH mice presented an increase in volume of ascitic fluid and number of tumor cells. The survival time of IH mice was also shorter than that measured in G animals. Furthermore, IH mice injected with a different number of tumor cells on ED1 always presented increased Ehrlich tumor cells than G group. Interestingly. these effects were not observed when the tumor cells injection was done on ED4. These results suggest that individual-housing conditions induce an altered immune-endocrine response and, at the same time, decrease animals` resistance to Ehrlich tumor growth. It is proposed that the neural link between the behavioral and immunological changes observed after the stress of individual housing might involve the activation of the HPA axis. (C) 2008 Elsevier Inc. All rights reserved.